These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
612 related articles for article (PubMed ID: 27508404)
1. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. Wang J; Feng B; Su J; Guo L ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404 [TBL] [Abstract][Full Text] [Related]
2. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. Wang D; Chang G; Zhang Y; Chao J; Yang J; Su S; Wang L; Fan C; Wang L Nanoscale; 2016 Jul; 8(25):12697-701. PubMed ID: 27283270 [TBL] [Abstract][Full Text] [Related]
4. The role of carbon dots - derived underlayer in hematite photoanodes. Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831 [TBL] [Abstract][Full Text] [Related]
5. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
6. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. Li X; Bassi PS; Boix PP; Fang Y; Wong LH ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330 [TBL] [Abstract][Full Text] [Related]
7. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. Chen D; Liu Z ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118 [TBL] [Abstract][Full Text] [Related]
8. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping. Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984 [TBL] [Abstract][Full Text] [Related]
9. Sb-Doped SnO Han H; Kment S; Karlicky F; Wang L; Naldoni A; Schmuki P; Zboril R Small; 2018 May; 14(19):e1703860. PubMed ID: 29655304 [TBL] [Abstract][Full Text] [Related]
10. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803 [TBL] [Abstract][Full Text] [Related]
11. Underlayer engineering into the Sn-doped hematite photoanode for facilitating carrier extraction. Zhou Z; Wu S; Xiao C; Li L; Li X Phys Chem Chem Phys; 2020 Apr; 22(14):7306-7313. PubMed ID: 32211650 [TBL] [Abstract][Full Text] [Related]
12. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113 [TBL] [Abstract][Full Text] [Related]
13. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
14. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959 [TBL] [Abstract][Full Text] [Related]
15. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964 [TBL] [Abstract][Full Text] [Related]
16. Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water-Ethanol-Acetic Acid Solution for Enhanced Charge Transport and Separation. Wang J; Wang M; Zhang T; Wang Z; Guo P; Su J; Guo L ACS Appl Mater Interfaces; 2018 Apr; 10(15):12594-12602. PubMed ID: 29577716 [TBL] [Abstract][Full Text] [Related]
17. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
18. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
19. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation. Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692 [TBL] [Abstract][Full Text] [Related]
20. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]