These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2750891)

  • 1. Kinetics of Na-Li exchange in high and low K sheep red blood cells.
    Ryu KH; Adragna NC; Lauf PK
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C58-64. PubMed ID: 2750891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.
    Duhm J; Becker BF
    J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium efflux through the Na/K pump in human erythrocytes.
    Dunham PB; Senyk O
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of lithium efflux through the (Na,K)-pump of human erythrocytes.
    Rodland KD; Dunham PB
    Biochim Biophys Acta; 1980 Nov; 602(2):376-88. PubMed ID: 7426655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li+-Na+ exchange and Na+-K+-Cl- cotransport systems in essential hypertension.
    Canessa M; Brugnara C; Escobales N
    Hypertension; 1987 Nov; 10(5 Pt 2):I4-10. PubMed ID: 2824364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic analysis of Na-Li countertransport in human red blood cells.
    Hannaert PA; Garay RP
    J Gen Physiol; 1986 Mar; 87(3):353-68. PubMed ID: 2420916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of Cl-dependent K fluxes in hyposmotically swollen low K sheep erythrocytes.
    Delpire E; Lauf PK
    J Gen Physiol; 1991 Feb; 97(2):173-93. PubMed ID: 2016578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte Lii-Nao countertransport system. Inhibition by N-ethylmaleimide probes for a conformational change of the transport system.
    Levy R; Livne A
    Biochim Biophys Acta; 1984 Nov; 777(2):157-66. PubMed ID: 6487623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension.
    Canessa ML; Morgan K; Semplicini A
    J Cardiovasc Pharmacol; 1988; 12 Suppl 3():S92-8. PubMed ID: 2467112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells.
    Timmer RT; Gunn RB
    J Gen Physiol; 2000 Sep; 116(3):363-78. PubMed ID: 10962014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of significant sodium-hydrogen exchange by rabbit erythrocyte sodium-lithium countertransporter.
    Jennings ML; Adams-Lackey M; Cook KW
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C63-8. PubMed ID: 4014452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human red cells from pre (hepato splenic-late fetal) and postnatal (bone marrow-adult's) stages of haemopoiesis: Na+/Li+ exchange kinetic.
    Taborda D; Serrani RE; Corchs JL
    Arch Physiol Biochem; 1998 Apr; 106(2):81-7. PubMed ID: 9894863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/Li+ exchange kinetic characterization. Red blood cells from normotensive individuals.
    Corchs JL; Taborda D; Mujica G; Serrani RE
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):75-9. PubMed ID: 11688550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl- and N-ethylmaleimide sensitivity in maturing high K+ cells.
    Lauf PK
    J Membr Biol; 1983; 73(3):247-56. PubMed ID: 6864777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium and protein kinase C modulators regulate swelling-activated K-Cl cotransport and reveal a complete phosphatidylinositol cycle in low K sheep erythrocytes.
    Ferrell CM; Lauf PK; Wilson BA; Adragna NC
    J Membr Biol; 2000 Sep; 177(1):81-93. PubMed ID: 10960155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic expression for sodium-lithium countertransport in human red cells.
    Smith JB; Ash KO; Hentschel WM; Williams RR
    Clin Chim Acta; 1982 Jul; 122(3):337-43. PubMed ID: 7105418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cholesterol and dipalmitoyl phosphatidylcholine enrichment on the kinetics of Na-Li exchange of human erythrocytes.
    Engelmann B; Duhm J
    J Membr Biol; 1991 Jun; 122(3):231-8. PubMed ID: 1920387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of lithium and protons with the sodium-proton exchanger of dog red blood cells.
    Parker JC
    J Gen Physiol; 1986 Feb; 87(2):189-200. PubMed ID: 3005472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.