BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27509029)

  • 1. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria.
    Shima K; Coopmeiners J; Graspeuntner S; Dalhoff K; Rupp J
    FEBS Lett; 2016 Nov; 590(21):3887-3904. PubMed ID: 27509029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia pneumoniae as a respiratory pathogen.
    Hahn DL; Azenabor AA; Beatty WL; Byrne GI
    Front Biosci; 2002 Mar; 7():e66-76. PubMed ID: 11861211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking microbiota and respiratory disease.
    Hauptmann M; Schaible UE
    FEBS Lett; 2016 Nov; 590(21):3721-3738. PubMed ID: 27637588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of IgM and IgG antibodies to Chlamydophila pneumoniae in pediatric community-acquired lower respiratory tract infections.
    Kumar S; Saigal SR; Sethi GR
    Indian J Pathol Microbiol; 2011; 54(4):782-5. PubMed ID: 22234110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alveolar epithelial cells type II are major target cells for C. pneumoniae in chronic but not in acute respiratory infection.
    Rupp J; Droemann D; Goldmann T; Zabel P; Solbach W; Vollmer E; Branscheid D; Dalhoff K; Maass M
    FEMS Immunol Med Microbiol; 2004 Jul; 41(3):197-203. PubMed ID: 15196568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in Dusp1(-/-) mice: critical role of IL-6.
    Rodriguez N; Dietrich H; Mossbrugger I; Weintz G; Scheller J; Hammer M; Quintanilla-Martinez L; Rose-John S; Miethke T; Lang R
    J Leukoc Biol; 2010 Sep; 88(3):579-87. PubMed ID: 20483921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging pathogenic links between microbiota and the gut-lung axis.
    Budden KF; Gellatly SL; Wood DL; Cooper MA; Morrison M; Hugenholtz P; Hansbro PM
    Nat Rev Microbiol; 2017 Jan; 15(1):55-63. PubMed ID: 27694885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia pneumoniae, asthma, and COPD: what is the evidence?
    Hahn DL
    Ann Allergy Asthma Immunol; 1999 Oct; 83(4):271-88, 291; quiz 291-2. PubMed ID: 10541419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature.
    Gieffers J; van Zandbergen G; Rupp J; Sayk F; Krüger S; Ehlers S; Solbach W; Maass M
    Eur Respir J; 2004 Apr; 23(4):506-10. PubMed ID: 15083745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Chlamydia pneumoniae infections in asthmatic and non-asthmatic military conscripts during a non-epidemic period.
    Juvonen R; Bloigu A; Paldanius M; Peitso A; Silvennoinen-Kassinen S; Harju T; Leinonen M; Saikku P
    Clin Microbiol Infect; 2008 Mar; 14(3):207-12. PubMed ID: 18070131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intragastric primary infection sensitizes to lung reinfection in a Chlamydia pneumoniae mouse model.
    Erkkilä L; Saario E; Laitinen K; Saikku P; Leinonen M
    Vaccine; 2008 May; 26(20):2503-9. PubMed ID: 18433949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases.
    Dumas A; Bernard L; Poquet Y; Lugo-Villarino G; Neyrolles O
    Cell Microbiol; 2018 Dec; 20(12):e12966. PubMed ID: 30329198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infections caused by Chlamydophila pneumoniae.
    Choroszy-Król I; Frej-Mądrzak M; Hober M; Sarowska J; Jama-Kmiecik A
    Adv Clin Exp Med; 2014; 23(1):123-6. PubMed ID: 24596014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion.
    He X; Liang Y; LaValley MP; Lai J; Ingalls RR
    BMC Microbiol; 2015 Oct; 15():228. PubMed ID: 26494400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chlamydia pneumoniae].
    Ostergaard LJ; Andersen SB; Christiansen G; Andersen PL
    Ugeskr Laeger; 1993 Jun; 155(24):1837-41. PubMed ID: 8317039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host metabolism promotes growth of Chlamydia pneumoniae in a low oxygen environment.
    Szaszák M; Shima K; Käding N; Hannus M; Solbach W; Rupp J
    Int J Med Microbiol; 2013 Jul; 303(5):239-46. PubMed ID: 23665044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asthmatic persons are prone to the persistence of Chlamydia pneumoniae antibodies.
    Paldanius M; Juvonen R; Leinonen M; Bloigu A; Silvennoinen-Kassinen S; Saikku P
    Diagn Microbiol Infect Dis; 2007 Oct; 59(2):117-22. PubMed ID: 17572038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sst1 resistance locus regulates evasion of type I interferon signaling by Chlamydia pneumoniae as a disease tolerance mechanism.
    He X; Berland R; Mekasha S; Christensen TG; Alroy J; Kramnik I; Ingalls RR
    PLoS Pathog; 2013; 9(8):e1003569. PubMed ID: 24009502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia pneumoniae enhances Interleukin 8 (IL-8) production with reduced azithromycin sensitivity under hypoxia.
    Matsuo J; Sakai K; Okubo T; Yamaguchi H
    APMIS; 2019 Mar; 127(3):131-138. PubMed ID: 30746791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Chlamydia pneumoniae candidate genes that interact with human apoptotic factor caspase-9.
    Aziz MA; Ushirokita R; Azuma Y
    J Gen Appl Microbiol; 2018 Nov; 64(5):253-257. PubMed ID: 29760350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.