These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27509074)

  • 1. Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: An organelle-level attempt.
    Chen Z; Song S; Wen Y
    Sci Total Environ; 2016 Dec; 572():361-368. PubMed ID: 27509074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris.
    Lee L; Hsu CY; Yen HW
    Bioprocess Biosyst Eng; 2017 Dec; 40(12):1725-1731. PubMed ID: 28871394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.
    Deng L; Wang H; Deng N
    J Hazard Mater; 2006 Nov; 138(2):288-92. PubMed ID: 16839665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of chromium and interaction with other elements in Chlorella vulgaris (Cloroficeae) and Daphnia magna (Crustacea, Cladocera).
    Regaldo L; Gagneten AM; Troiani H
    J Environ Biol; 2009 Mar; 30(2):213-6. PubMed ID: 20121020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreduction of chromium(VI) in microstructured ceramic hollow fibers impregnated with titanium dioxide and coated with green algae Chlorella vulgaris.
    Costa IGF; Terra NM; Cardoso VL; Batista FRX; Reis MHM
    J Hazard Mater; 2019 Nov; 379():120837. PubMed ID: 31276920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris.
    Qian H; Sun Z; Sun L; Jiang Y; Wei Y; Xie J; Fu Z
    Chemosphere; 2013 Oct; 93(6):885-91. PubMed ID: 23786815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata.
    Han X; Wong YS; Wong MH; Tam NF
    J Hazard Mater; 2007 Jul; 146(1-2):65-72. PubMed ID: 17197078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbance of photosystem II-oxygen evolution complex induced the oxidative damage in Chlorella vulgaris under the stress of cetyltrimethylammonium chloride.
    Zhang H; Liu N; Zhao J; Ge F; Xu Y; Chen Y
    Chemosphere; 2019 May; 223():659-667. PubMed ID: 30802831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ prepared algae-supported iron sulfide to remove hexavalent chromium.
    Wu J; Zheng H; Hou J; Miao L; Zhang F; Zeng RJ; Xing B
    Environ Pollut; 2021 Apr; 274():115831. PubMed ID: 33213947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution.
    Wang Q; Xu X; Zhao F; Liu Z; Xu J
    Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutual effects of selenium and chromium on their removal by Chlorella vulgaris and associated toxicity.
    Zou H; Huang JC; Zhou C; He S; Zhou W
    Sci Total Environ; 2020 Jul; 724():138219. PubMed ID: 32251888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges.
    Caravelli AH; Giannuzzi L; Zaritzky NE
    J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous analysis of photosystem responses of Microcystis aeruginoga under chromium stress.
    Wang S; Chen F; Mu S; Zhang D; Pan X; Lee DJ
    Ecotoxicol Environ Saf; 2013 Feb; 88():163-8. PubMed ID: 23228465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA.
    Gong Y; Werth CJ; He Y; Su Y; Zhang Y; Zhou X
    Environ Pollut; 2018 Sep; 240():485-492. PubMed ID: 29754098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical reduction of Cr(VI) in the presence of sodium alginate and its application in water purification.
    Butter B; Santander P; Pizarro GDC; Oyarzún DP; Tasca F; Sánchez J
    J Environ Sci (China); 2021 Mar; 101():304-312. PubMed ID: 33334525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of organic matter molecular weight on hexavalent chromium enrichment in green microalgae.
    Luo L; Jiang X; Du Y; Dzakpasu M; Yang C; Guo W; Ngo HH; Wang XC
    J Hazard Mater; 2024 May; 470():134304. PubMed ID: 38615650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies.
    Elangovan R; Philip L; Chandraraj K
    J Hazard Mater; 2008 Mar; 152(1):100-12. PubMed ID: 17689012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent.
    Bachate SP; Nandre VS; Ghatpande NS; Kodam KM
    Chemosphere; 2013 Feb; 90(8):2273-8. PubMed ID: 23182111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii.
    Aharchaou I; Rosabal M; Liu F; Battaglia E; Vignati DAL; Fortin C
    Aquat Toxicol; 2017 Jan; 182():49-57. PubMed ID: 27866075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.