These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27509091)

  • 21. Receptor binding characteristics of the endocrine disruptor bisphenol A for the human nuclear estrogen-related receptor gamma. Chief and corroborative hydrogen bonds of the bisphenol A phenol-hydroxyl group with Arg316 and Glu275 residues.
    Liu X; Matsushima A; Okada H; Tokunaga T; Isozaki K; Shimohigashi Y
    FEBS J; 2007 Dec; 274(24):6340-51. PubMed ID: 18005256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks.
    Stojić N; Erić S; Kuzmanovski I
    J Mol Graph Model; 2010 Nov; 29(3):450-60. PubMed ID: 20952233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays.
    Norinder U; Boyer S
    Chem Res Toxicol; 2016 Jun; 29(6):1003-10. PubMed ID: 27152554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key learnings from performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 in vitro assays.
    LeBaron MJ; Coady KK; O'Connor JC; Nabb DL; Markell LK; Snajdr S; Sue Marty M
    Birth Defects Res B Dev Reprod Toxicol; 2014 Feb; 101(1):23-42. PubMed ID: 24515815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evaluation of 25 selected ToxCast chemicals in medium-throughput assays to detect genotoxicity.
    Kligerman AD; Young RR; Stankowski LF; Pant K; Lawlor T; Aardema MJ; Houck KA
    Environ Mol Mutagen; 2015 Jun; 56(5):468-76. PubMed ID: 25537651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.
    Liu H; Yao X; Gramatica P
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):490-6. PubMed ID: 19519328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin.
    Liu H; Yang X; Lu R
    Chemosphere; 2016 Aug; 156():1-7. PubMed ID: 27156209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ANN and Bayesian classification models for virtual screening of endocrine-disrupting chemicals.
    Nowicki P; Klos J; Kokot Z
    Comb Chem High Throughput Screen; 2014; 17(5):407-16. PubMed ID: 24547995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of the estrogen specific mitogenic response of MCF-7 cells by selected analogues of estradiol-17 beta: a 3D QSAR study.
    Wiese TE; Polin LA; Palomino E; Brooks SC
    J Med Chem; 1997 Oct; 40(22):3659-69. PubMed ID: 9357533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational analysis of the ToxCast estrogen receptor agonist assays to predict vitellogenin induction by chemicals in male fish.
    Dreier DA; Denslow ND; Martyniuk CJ
    Environ Toxicol Pharmacol; 2017 Jul; 53():177-183. PubMed ID: 28645054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.
    Papa E; Kovarich S; Gramatica P
    Chem Res Toxicol; 2010 May; 23(5):946-54. PubMed ID: 20408563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.
    Johnston TK; Perkins E; Ferguson DC; Cropek DM
    Environ Toxicol Chem; 2016 Oct; 35(10):2530-2541. PubMed ID: 26931821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive model of rat reproductive toxicity from ToxCast high throughput screening.
    Martin MT; Knudsen TB; Reif DM; Houck KA; Judson RS; Kavlock RJ; Dix DJ
    Biol Reprod; 2011 Aug; 85(2):327-39. PubMed ID: 21565999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative structural connectivity spectra analysis (CoSCoSA) models of steroids binding to the aromatase enzyme.
    Beger RD; Wilkes JG
    J Mol Recognit; 2002; 15(3):154-62. PubMed ID: 12203841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data.
    Trisciuzzi D; Alberga D; Mansouri K; Judson R; Cellamare S; Catto M; Carotti A; Benfenati E; Novellino E; Mangiatordi GF; Nicolotti O
    Future Med Chem; 2015; 7(14):1921-36. PubMed ID: 26440057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.
    Paul Friedman K; Papineni S; Marty MS; Yi KD; Goetz AK; Rasoulpour RJ; Kwiatkowski P; Wolf DC; Blacker AM; Peffer RC
    Crit Rev Toxicol; 2016 Oct; 46(9):785-833. PubMed ID: 27347635
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.