BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27509293)

  • 1. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.
    Tong X; Dong J; Shang Y; Inthavong K; Tu J
    Comput Biol Med; 2016 Oct; 77():40-8. PubMed ID: 27509293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.
    Inthavong K; Fung MC; Yang W; Tu J
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):59-67. PubMed ID: 24914675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics.
    Inthavong K; Tian ZF; Tu JY; Yang W; Xue C
    Comput Biol Med; 2008 Jun; 38(6):713-26. PubMed ID: 18468593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized Medicine in Nasal Delivery: The Use of Patient-Specific Administration Parameters To Improve Nasal Drug Targeting Using 3D-Printed Nasal Replica Casts.
    Warnken ZN; Smyth HDC; Davis DA; Weitman S; Kuhn JG; Williams RO
    Mol Pharm; 2018 Apr; 15(4):1392-1402. PubMed ID: 29485888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed intranasal spray penetration: comparisons before and after nasal surgery.
    Frank DO; Kimbell JS; Cannon D; Rhee JS
    Int Forum Allergy Rhinol; 2013 Jan; 3(1):48-55. PubMed ID: 22927179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip.
    Zare F; Aalaei E; Zare F; Faramarzi M; Kamali R
    Comput Methods Programs Biomed; 2022 Jun; 221():106864. PubMed ID: 35580527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients.
    Farzal Z; Basu S; Burke A; Fasanmade OO; Lopez EM; Bennett WD; Ebert CS; Zanation AM; Senior BA; Kimbell JS
    Int Forum Allergy Rhinol; 2019 Jul; 9(7):746-758. PubMed ID: 30821929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simplified Geometric Model to Predict Nasal Spray Deposition in Children and Adults.
    Foo MY; Sawant N; Overholtzer E; Donovan MD
    AAPS PharmSciTech; 2018 Oct; 19(7):2767-2777. PubMed ID: 29948982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and sensitivity analysis for predicting nasal drug delivery for targeted deposition.
    Calmet H; Dosimont D; Oks D; Houzeaux G; Almirall BV; Inthavong K
    Int J Pharm; 2023 Jul; 642():123098. PubMed ID: 37321463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution visualization and analysis of nasal spray drug delivery.
    Inthavong K; Fung MC; Tong X; Yang W; Tu J
    Pharm Res; 2014 Aug; 31(8):1930-7. PubMed ID: 24549819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Numerical Investigation of Particle Deposition in Human Nasal Cavity for Different Parameters of Spay Device].
    Du W; Meng Z; Guo H; Wang S; Li W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 Mar; 41(2):100-102. PubMed ID: 29862678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of spray properties on intranasal deposition.
    Foo MY; Cheng YS; Su WC; Donovan MD
    J Aerosol Med; 2007; 20(4):495-508. PubMed ID: 18158721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breath actuated device improves delivery to target sites beyond the nasal valve.
    Djupesland PG; Skretting A; Winderen M; Holand T
    Laryngoscope; 2006 Mar; 116(3):466-72. PubMed ID: 16540911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External characteristics of unsteady spray atomization from a nasal spray device.
    Fung MC; Inthavong K; Yang W; Lappas P; Tu J
    J Pharm Sci; 2013 Mar; 102(3):1024-35. PubMed ID: 23303644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.
    Engelhardt L; Röhm M; Mavoungou C; Schindowski K; Schafmeister A; Simon U
    Pharm Res; 2016 Jun; 33(6):1337-50. PubMed ID: 26887679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.
    Keeler JA; Patki A; Woodard CR; Frank-Ito DO
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):153-66. PubMed ID: 26270330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design.
    Guo C; Stine KJ; Kauffman JF; Doub WH
    Eur J Pharm Sci; 2008 Dec; 35(5):417-26. PubMed ID: 18832029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and Sensitivity analysis for a nasal spray deposition computational model.
    Calmet H; Oks D; Santiago A; Houzeaux G; Corfec AL; Deruyver L; Rigaut C; Lambert P; Haut B; Goole J
    Int J Pharm; 2022 Oct; 626():122118. PubMed ID: 36029992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.
    Kimbell JS; Segal RA; Asgharian B; Wong BA; Schroeter JD; Southall JP; Dickens CJ; Brace G; Miller FJ
    J Aerosol Med; 2007; 20(1):59-74. PubMed ID: 17388754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.
    Djupesland PG; Skretting A
    J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):280-9. PubMed ID: 22251061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.