These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27509490)

  • 21. A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces.
    Xu D; Si Y; Meroueh SO
    J Chem Inf Model; 2017 Sep; 57(9):2250-2272. PubMed ID: 28766941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.
    Kosikowska P; Bochno M; Macegoniuk K; Forlani G; Kafarski P; Berlicki Ł
    J Enzyme Inhib Med Chem; 2016 Dec; 31(6):931-8. PubMed ID: 26235917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual screening to identify novel potential inhibitors for Glutamine synthetase of
    Kumari M; Subbarao N
    J Biomol Struct Dyn; 2020 Oct; 38(17):5062-5080. PubMed ID: 31755360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity.
    Unno H; Uchida T; Sugawara H; Kurisu G; Sugiyama T; Yamaya T; Sakakibara H; Hase T; Kusunoki M
    J Biol Chem; 2006 Sep; 281(39):29287-96. PubMed ID: 16829528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2).
    Zhong M; Lynch A; Muellers SN; Jehle S; Luo L; Hall DR; Iwase R; Carolan JP; Egbert M; Wakefield A; Streu K; Harvey CM; Ortet PC; Kozakov D; Vajda S; Allen KN; Whitty A
    Biochemistry; 2020 Feb; 59(4):563-581. PubMed ID: 31851823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein-protein interface.
    Golden MS; Cote SM; Sayeg M; Zerbe BS; Villar EA; Beglov D; Sazinsky SL; Georgiadis RM; Vajda S; Kozakov D; Whitty A
    J Am Chem Soc; 2013 Apr; 135(16):6242-56. PubMed ID: 23506214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicopy crystallographic refinement of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible loops in the enzymatic mechanism and its regulation.
    Gill HS; Pfluegl GM; Eisenberg D
    Biochemistry; 2002 Aug; 41(31):9863-72. PubMed ID: 12146952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport.
    Becker TW; Carrayol E; Hirel B
    Planta; 2000 Nov; 211(6):800-6. PubMed ID: 11144264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.
    Theron A; Roth RL; Hoppe H; Parkinson C; van der Westhuyzen CW; Stoychev S; Wiid I; Pietersen RD; Baker B; Kenyon CP
    PLoS One; 2017; 12(10):e0185068. PubMed ID: 28972974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors.
    Kuenemann MA; Labbé CM; Cerdan AH; Sperandio O
    Sci Rep; 2016 Apr; 6():23815. PubMed ID: 27034268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation.
    Campolo N; Mastrogiovanni M; Mariotti M; Issoglio FM; Estrin D; Hägglund P; Grune T; Davies MJ; Bartesaghi S; Radi R
    J Biol Chem; 2023 Mar; 299(3):102941. PubMed ID: 36702251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights.
    Krajewski WW; Jones TA; Mowbray SL
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10499-504. PubMed ID: 16027359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors.
    Levoin N; Vo DD; Gautier F; Barillé-Nion S; Juin P; Tasseau O; Grée R
    Bioorg Med Chem; 2015 Apr; 23(8):1747-57. PubMed ID: 25797160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure.
    Llorca O; Betti M; González JM; Valencia A; Márquez AJ; Valpuesta JM
    J Struct Biol; 2006 Dec; 156(3):469-79. PubMed ID: 16884924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets.
    Harth G; Horwitz MA
    J Exp Med; 1999 May; 189(9):1425-36. PubMed ID: 10224282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-L-glutamate/glutamine cell wall structure, and bacterial replication.
    Harth G; Zamecnik PC; Tang JY; Tabatadze D; Horwitz MA
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):418-23. PubMed ID: 10618433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based computational approaches for small-molecule modulation of protein-protein interactions.
    Xu D; Wang B; Meroueh SO
    Methods Mol Biol; 2015; 1278():77-92. PubMed ID: 25859944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria.
    Saelices L; Robles-Rengel R; Florencio FJ; Muro-Pastor MI
    Mol Microbiol; 2015 May; 96(3):483-96. PubMed ID: 25626767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedback inhibition of fully unadenylylated glutamine synthetase from Salmonella typhimurium by glycine, alanine, and serine.
    Liaw SH; Pan C; Eisenberg D
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4996-5000. PubMed ID: 8099447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.