These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2750954)

  • 1. Renal responses to exercise-induced lactic acidosis.
    McKelvie RS; Lindinger MI; Heigenhauser GJ; Sutton JR; Jones NL
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R102-8. PubMed ID: 2750954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood ion regulation during repeated maximal exercise and recovery in humans.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing hydrogen ion concentration in muscle after intense exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2080-9. PubMed ID: 3145275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1486-94. PubMed ID: 2360695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal response to acid loading in the developing lamb fetus, intact in utero.
    Daniel SS; Bowe ET; Lallemand R; Yeh MN; James LS
    J Perinat Med; 1975; 3(1):34-43. PubMed ID: 479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of erythrocytes to the control of the electrolyte changes of exercise.
    McKelvie RS; Lindinger MI; Heigenhauser GJ; Jones NL
    Can J Physiol Pharmacol; 1991 Jul; 69(7):984-93. PubMed ID: 1954568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis.
    Chin ER; Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1375-86. PubMed ID: 9534949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water and electrolyte balance in the vascular space during graded exercise in humans.
    Nose H; Takamata A; Mack GW; Oda Y; Okuno T; Kang DH; Morimoto T
    J Appl Physiol (1985); 1991 Jun; 70(6):2757-62. PubMed ID: 1885473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of short-term training on plasma acid-base balance during incremental exercise in man.
    Putman CT; Jones NL; Heigenhauser GJ
    J Physiol; 2003 Jul; 550(Pt 2):585-603. PubMed ID: 12766247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte ion regulation across inactive muscle during leg exercise.
    McKelvie RS; Lindinger MI; Jones NL; Heigenhauser GJ
    Can J Physiol Pharmacol; 1992 Dec; 70(12):1625-33. PubMed ID: 1301241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in arterial, mixed venous and intraerythrocytic concentrations of ions in supramaximally exercising horses.
    Bayly WM; Kingston JK; Brown JA; Keegan RD; Greene SA; Sides RH
    Equine Vet J Suppl; 2006 Aug; (36):294-7. PubMed ID: 17402435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.
    Lawrence MJ; Wright PA; Wood CM
    J Exp Biol; 2015 Jul; 218(Pt 13):2124-35. PubMed ID: 25987732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease.
    Casaburi R; Patessio A; Ioli F; Zanaboni S; Donner CF; Wasserman K
    Am Rev Respir Dis; 1991 Jan; 143(1):9-18. PubMed ID: 1986689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiratory loading intensity does not influence lactate clearance during recovery.
    Johnson MA; Mills DE; Brown DM; Bayfield KJ; Gonzalez JT; Sharpe GR
    Med Sci Sports Exerc; 2012 May; 44(5):863-71. PubMed ID: 22089476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of induced metabolic alkalosis on sweat composition in men.
    Patterson MJ; Galloway SD; Nimmo MA
    Acta Physiol Scand; 2002 Jan; 174(1):41-6. PubMed ID: 11851595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R
    Nefrologia; 2008; 28 Suppl 3():87-93. PubMed ID: 19018744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NaHCO3 and NaCl tolerance in chronic renal failure II.
    Husted FC; Nolph KD
    Clin Nephrol; 1977 Jan; 7(1):21-5. PubMed ID: 832432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is urodilatin the missing link in exercise-dependent renal sodium retention?
    Schmidt W; Bub A; Meyer M; Weiss T; Schneider G; Maassen N; Forssmann WG
    J Appl Physiol (1985); 1998 Jan; 84(1):123-8. PubMed ID: 9451626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NaHCO(3) and KHCO(3) ingestion rapidly increases renal electrolyte excretion in humans.
    Lindinger MI; Franklin TW; Lands LC; Pedersen PK; Welsh DG; Heigenhauser GJ
    J Appl Physiol (1985); 2000 Feb; 88(2):540-50. PubMed ID: 10658021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.