BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2750960)

  • 1. Suprachiasmatic nuclei influence torpor and circadian temperature rhythms in hamsters.
    Ruby NF; Ibuka N; Barnes BM; Zucker I
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R210-5. PubMed ID: 2750960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters.
    Meyer-Bernstein EL; Jetton AE; Matsumoto SI; Markuns JF; Lehman MN; Bittman EL
    Endocrinology; 1999 Jan; 140(1):207-18. PubMed ID: 9886827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily torpor in the absence of the suprachiasmatic nucleus in Siberian hamsters.
    Ruby NF; Zucker I
    Am J Physiol; 1992 Aug; 263(2 Pt 2):R353-62. PubMed ID: 1510174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paraventricular nucleus ablation disrupts daily torpor in Siberian hamsters.
    Ruby NF
    Brain Res Bull; 1995; 37(2):193-8. PubMed ID: 7606495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily torpor affects the molecular machinery of the circadian clock in Djungarian hamsters (Phodopus sungorus).
    Herwig A; Saboureau M; Pevet P; Steinlechner S
    Eur J Neurosci; 2007 Nov; 26(10):2739-46. PubMed ID: 18001271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of pineal-independent mediation of seasonal differences in suprachiasmatic nucleus AVP and VIP mRNA expression in Siberian hamsters.
    Freeman DA; Herron JM; Duncan MJ
    Brain Res Mol Brain Res; 2002 May; 101(1-2):33-8. PubMed ID: 12007829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for the circadian clock of the suprachiasmatic nuclei in the interpretation of serial melatonin signals in the Syrian hamster.
    Grosse J; Hastings MH
    J Biol Rhythms; 1996 Dec; 11(4):317-24. PubMed ID: 8946259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daily torpor alters multiple gene expression in the suprachiasmatic nucleus and pineal gland of the Djungarian hamster (Phodopus sungorus).
    Herwig A; Revel F; Saboureau M; Pévet P; Steinlechner S
    Chronobiol Int; 2006; 23(1-2):269-76. PubMed ID: 16687300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pineal gland influences rat circadian activity rhythms in constant light.
    Cassone VM
    J Biol Rhythms; 1992; 7(1):27-40. PubMed ID: 1571591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrainment of rat circadian rhythms by the melatonin agonist S-20098 requires intact suprachiasmatic nuclei but not the pineal.
    Redman JR; Francis AJ
    J Biol Rhythms; 1998 Feb; 13(1):39-51. PubMed ID: 9486842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels.
    Ruby NF; Dark J; Burns DE; Heller HC; Zucker I
    J Neurosci; 2002 Jan; 22(1):357-64. PubMed ID: 11756519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 5-HT denervation of the suprachiasmatic nuclei or lesions of the median raphe nucleus on daily torpor in the Djungarian hamster, Phodopus sungorus.
    Ouarour A; Cutrera RA; Pévet P
    Biol Signals; 1995; 4(1):51-8. PubMed ID: 7550584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lesions dorsal to the suprachiasmatic nuclei abolish split activity rhythms of hamsters.
    Harrington ME; Eskes GA; Dickson P; Rusak B
    Brain Res Bull; 1990 Apr; 24(4):593-7. PubMed ID: 2357590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters.
    Hakim H; DeBernardo AP; Silver R
    J Biol Rhythms; 1991; 6(2):97-113. PubMed ID: 1773090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters.
    Silver R; Lehman MN; Gibson M; Gladstone WR; Bittman EL
    Brain Res; 1990 Aug; 525(1):45-58. PubMed ID: 2245325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the phase and period of circadian rhythms restored by suprachiasmatic transplants.
    Matsumoto S; Basil J; Jetton AE; Lehman MN; Bittman EL
    J Biol Rhythms; 1996 Jun; 11(2):145-62. PubMed ID: 8744242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pinealectomy on SCN electrical firing rhythm in Djungarian hamsters.
    Redlin U; Lynch GR
    Neurosci Lett; 1997 Oct; 236(2):67-70. PubMed ID: 9404813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: pinealectomy effects.
    Rusak B; Yu GD
    Brain Res; 1993 Feb; 602(2):200-4. PubMed ID: 8448666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs.
    Warren WS; Cassone VM
    J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pineal-independent regulation of photo-nonresponsiveness in the Siberian hamster (Phodopus sungorus).
    Prendergast BJ; Freeman DA
    J Biol Rhythms; 1999 Feb; 14(1):62-71. PubMed ID: 10036994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.