BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27509885)

  • 1. Magnetic force-assisted self-locking metallic bead array for fabrication of diverse concave microwell geometries.
    Lee GH; Park YE; Cho M; Park H; Park JY
    Lab Chip; 2016 Sep; 16(18):3565-75. PubMed ID: 27509885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries.
    Lee GH; Suh Y; Park JY
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk.
    Kim K; Kim SH; Lee GH; Park JY
    Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional cartilage tissue regeneration system harnessing goblet-shaped microwells containing biocompatible hydrogel.
    Udomluck N; Kim SH; Cho H; Park JY; Park H
    Biofabrication; 2019 Dec; 12(1):015019. PubMed ID: 31783391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells.
    Zhang B; Li Y; Wang G; Jia Z; Li H; Peng Q; Gao Y
    J Mater Sci Mater Med; 2018 Apr; 29(5):49. PubMed ID: 29675647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple microsphere-based mold to rapidly fabricate microwell arrays for multisize 3D tumor culture.
    Li Z; Guo X; Sun L; Xu J; Liu W; Li T; Wang J
    Biotechnol Bioeng; 2020 Apr; 117(4):1092-1100. PubMed ID: 31868229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.
    Ko JY; Im GI
    Biotechnol Lett; 2016 Nov; 38(11):1967-1974. PubMed ID: 27534541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-filling microwell arrays (SFMAs) for tumor spheroid formation.
    Seyfoori A; Samiei E; Jalili N; Godau B; Rahmanian M; Farahmand L; Majidzadeh-A K; Akbari M
    Lab Chip; 2018 Nov; 18(22):3516-3528. PubMed ID: 30357219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture.
    Ozawa F; Ino K; Arai T; Ramón-Azcón J; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2013 Aug; 13(15):3128-35. PubMed ID: 23764965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.
    Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S
    Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids.
    Kim D; Lee SJ; Youn J; Hong H; Eom S; Kim DS
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34030141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of CD44 antibody-- or RGDS peptide--immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells.
    Yanada S; Ochi M; Adachi N; Nobuto H; Agung M; Kawamata S
    J Biomed Mater Res A; 2006 Jun; 77(4):773-84. PubMed ID: 16565960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids.
    Liu T; Chien CC; Parkinson L; Thierry B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled-size embryoid body formation in concave microwell arrays.
    Choi YY; Chung BG; Lee DH; Khademhosseini A; Kim JH; Lee SH
    Biomaterials; 2010 May; 31(15):4296-303. PubMed ID: 20206991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues.
    Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR
    Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.
    Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ
    Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss.
    Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J
    Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.