These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27509885)
1. Magnetic force-assisted self-locking metallic bead array for fabrication of diverse concave microwell geometries. Lee GH; Park YE; Cho M; Park H; Park JY Lab Chip; 2016 Sep; 16(18):3565-75. PubMed ID: 27509885 [TBL] [Abstract][Full Text] [Related]
2. A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries. Lee GH; Suh Y; Park JY J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443026 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk. Kim K; Kim SH; Lee GH; Park JY Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487 [TBL] [Abstract][Full Text] [Related]
4. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional cartilage tissue regeneration system harnessing goblet-shaped microwells containing biocompatible hydrogel. Udomluck N; Kim SH; Cho H; Park JY; Park H Biofabrication; 2019 Dec; 12(1):015019. PubMed ID: 31783391 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells. Zhang B; Li Y; Wang G; Jia Z; Li H; Peng Q; Gao Y J Mater Sci Mater Med; 2018 Apr; 29(5):49. PubMed ID: 29675647 [TBL] [Abstract][Full Text] [Related]
7. A simple microsphere-based mold to rapidly fabricate microwell arrays for multisize 3D tumor culture. Li Z; Guo X; Sun L; Xu J; Liu W; Li T; Wang J Biotechnol Bioeng; 2020 Apr; 117(4):1092-1100. PubMed ID: 31868229 [TBL] [Abstract][Full Text] [Related]
8. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells. Ko JY; Im GI Biotechnol Lett; 2016 Nov; 38(11):1967-1974. PubMed ID: 27534541 [TBL] [Abstract][Full Text] [Related]
10. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Ozawa F; Ino K; Arai T; Ramón-Azcón J; Takahashi Y; Shiku H; Matsue T Lab Chip; 2013 Aug; 13(15):3128-35. PubMed ID: 23764965 [TBL] [Abstract][Full Text] [Related]
11. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017 [TBL] [Abstract][Full Text] [Related]
12. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids. Kim D; Lee SJ; Youn J; Hong H; Eom S; Kim DS Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34030141 [TBL] [Abstract][Full Text] [Related]
13. Effects of CD44 antibody-- or RGDS peptide--immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells. Yanada S; Ochi M; Adachi N; Nobuto H; Agung M; Kawamata S J Biomed Mater Res A; 2006 Jun; 77(4):773-84. PubMed ID: 16565960 [TBL] [Abstract][Full Text] [Related]
14. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. Liu T; Chien CC; Parkinson L; Thierry B ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458 [TBL] [Abstract][Full Text] [Related]
15. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation. Singh M; Close DA; Mukundan S; Johnston PA; Sant S Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587 [TBL] [Abstract][Full Text] [Related]
16. Controlled-size embryoid body formation in concave microwell arrays. Choi YY; Chung BG; Lee DH; Khademhosseini A; Kim JH; Lee SH Biomaterials; 2010 May; 31(15):4296-303. PubMed ID: 20206991 [TBL] [Abstract][Full Text] [Related]
17. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218 [TBL] [Abstract][Full Text] [Related]
18. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation. Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881 [TBL] [Abstract][Full Text] [Related]
19. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. Yang W; Yu H; Li G; Wei F; Wang Y; Liu L Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631 [TBL] [Abstract][Full Text] [Related]
20. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss. Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]