BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27510035)

  • 41. Assaying ATE1 Activity In Vitro.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():113-117. PubMed ID: 37010756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ATE1-Mediated Post-Translational Arginylation Is an Essential Regulator of Eukaryotic Cellular Homeostasis.
    Van V; Smith AT
    ACS Chem Biol; 2020 Dec; 15(12):3073-3085. PubMed ID: 33228359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-Terminal Arginylation Pull-down Analysis Using the R-Catcher Tool.
    Seo T; Han G; Cha-Molstad H
    Methods Mol Biol; 2023; 2620():219-228. PubMed ID: 37010765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. R-catcher, a potent molecular tool to unveil the arginylome.
    Seo T; Kim J; Shin HC; Kim JG; Ju S; Nawale L; Han G; Lee HS; Bang G; Kim JY; Bang JK; Lee KH; Soung NK; Hwang J; Lee C; Kim SJ; Kim BY; Cha-Molstad H
    Cell Mol Life Sci; 2021 Apr; 78(7):3725-3741. PubMed ID: 33687501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators.
    Hu RG; Sheng J; Qi X; Xu Z; Takahashi TT; Varshavsky A
    Nature; 2005 Oct; 437(7061):981-6. PubMed ID: 16222293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding.
    Cha-Molstad H; Sung KS; Hwang J; Kim KA; Yu JE; Yoo YD; Jang JM; Han DH; Molstad M; Kim JG; Lee YJ; Zakrzewska A; Kim SH; Kim ST; Kim SY; Lee HG; Soung NK; Ahn JS; Ciechanover A; Kim BY; Kwon YT
    Nat Cell Biol; 2015 Jul; 17(7):917-29. PubMed ID: 26075355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Loss of ATE1-mediated arginylation leads to impaired platelet myosin phosphorylation, clot retraction, and in vivo thrombosis formation.
    Lian L; Suzuki A; Hayes V; Saha S; Han X; Xu T; Yates JR; Poncz M; Kashina A; Abrams CS
    Haematologica; 2014 Mar; 99(3):554-60. PubMed ID: 24293517
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical analysis of protein arginylation.
    Wang J; Yates JR; Kashina A
    Methods Enzymol; 2019; 626():89-113. PubMed ID: 31606094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assaying ATE1 Activity in Yeast by β-Gal Degradation.
    Kashina AS
    Methods Mol Biol; 2015; 1337():59-65. PubMed ID: 26285881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():87-91. PubMed ID: 37010752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium.
    Carpio MA; López Sambrooks C; Durand ES; Hallak ME
    Biochem J; 2010 Jul; 429(1):63-72. PubMed ID: 20423325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity.
    Kechko OI; Petrushanko IY; Brower CS; Adzhubei AA; Moskalev AA; Piatkov KI; Mitkevich VA; Makarov AA
    Aging (Albany NY); 2019 Aug; 11(16):6134-6152. PubMed ID: 31446431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.
    Galiano MR; Hallak ME
    Methods Mol Biol; 2023; 2620():51-61. PubMed ID: 37010748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arginylation regulates adipogenesis by regulating expression of PPARγ at transcript and protein level.
    Singh A; Borah AK; Deka K; Gogoi AP; Verma K; Barah P; Saha S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Apr; 1864(4):596-607. PubMed ID: 30597201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of autophagic proteolysis by the N-recognin SQSTM1/p62 of the N-end rule pathway.
    Cha-Molstad H; Lee SH; Kim JG; Sung KW; Hwang J; Shim SM; Ganipisetti S; McGuire T; Mook-Jung I; Ciechanover A; Xie XQ; Kim BY; Kwon YT
    Autophagy; 2018; 14(2):359-361. PubMed ID: 29261001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arginyltransferase: A Personal and Historical Perspective.
    Soffer RL
    Methods Mol Biol; 2023; 2620():21-25. PubMed ID: 37010744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assaying ATE1 Activity In Vitro.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():73-7. PubMed ID: 26285883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots.
    Zhang H; Deery MJ; Gannon L; Powers SJ; Lilley KS; Theodoulou FL
    Proteomics; 2015 Jul; 15(14):2447-57. PubMed ID: 25728785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arginyl-tRNA-protein transferase 1 (ATE1) promotes melanoma cell growth and migration.
    Lazar I; Fabre B; Feng Y; Khateb A; Frit P; Kashina A; Zhang T; Avitan-Hersh E; Kim H; Brown K; Topisirovic I; Ronai ZA
    FEBS Lett; 2022 Jun; 596(11):1468-1480. PubMed ID: 35561126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration.
    Wang J; Han X; Leu NA; Sterling S; Kurosaka S; Fina M; Lee VM; Dong DW; Yates JR; Kashina A
    Sci Rep; 2017 Sep; 7(1):11323. PubMed ID: 28900170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.