These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Baek J; McLachlan GJ Bioinformatics; 2011 May; 27(9):1269-76. PubMed ID: 21372081 [TBL] [Abstract][Full Text] [Related]
4. Robust curve clustering based on a multivariate t-distribution model. Wang ZM; Song Q; Soh YC; Sim K IEEE Trans Neural Netw; 2010 Dec; 21(12):1976-84. PubMed ID: 20952338 [TBL] [Abstract][Full Text] [Related]
5. Robust parameter estimation of intensity distributions for brain magnetic resonance images. Schroeter P; Vesin JM; Langenberger T; Meuli R IEEE Trans Med Imaging; 1998 Apr; 17(2):172-86. PubMed ID: 9688150 [TBL] [Abstract][Full Text] [Related]
6. Model-based learning using a mixture of mixtures of Gaussian and uniform distributions. Browne RP; McNicholas PD; Sparling MD IEEE Trans Pattern Anal Mach Intell; 2012 Apr; 34(4):814-7. PubMed ID: 22383342 [TBL] [Abstract][Full Text] [Related]
7. Model-based clustering of microarray expression data via latent Gaussian mixture models. McNicholas PD; Murphy TB Bioinformatics; 2010 Nov; 26(21):2705-12. PubMed ID: 20802251 [TBL] [Abstract][Full Text] [Related]
8. Parsimony and parameter estimation for mixtures of multivariate leptokurtic-normal distributions. Browne RP; Bagnato L; Punzo A Adv Data Anal Classif; 2024; 18(3):597-625. PubMed ID: 39309701 [TBL] [Abstract][Full Text] [Related]
9. A pseudo-EM algorithm for clustering incomplete longitudinal data. Shaikh M; McNicholas PD; Desmond AF Int J Biostat; 2010; 6(1):Article 8. PubMed ID: 21969969 [TBL] [Abstract][Full Text] [Related]
10. Statistical power for cluster analysis. Dalmaijer ES; Nord CL; Astle DE BMC Bioinformatics; 2022 May; 23(1):205. PubMed ID: 35641905 [TBL] [Abstract][Full Text] [Related]
11. Regularized parameter estimation in high-dimensional gaussian mixture models. Ruan L; Yuan M; Zou H Neural Comput; 2011 Jun; 23(6):1605-22. PubMed ID: 21395439 [TBL] [Abstract][Full Text] [Related]
12. Model-Based Clustering with Measurement or Estimation Errors. Zhang W; Di Y Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32050700 [TBL] [Abstract][Full Text] [Related]
13. Automated gating of flow cytometry data via robust model-based clustering. Lo K; Brinkman RR; Gottardo R Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272 [TBL] [Abstract][Full Text] [Related]
15. Robust, automatic spike sorting using mixtures of multivariate t-distributions. Shoham S; Fellows MR; Normann RA J Neurosci Methods; 2003 Aug; 127(2):111-22. PubMed ID: 12906941 [TBL] [Abstract][Full Text] [Related]
16. Practical identifiability of finite mixtures of multivariate bernoulli distributions. Carreira-Perpinan MA; Renals S Neural Comput; 2000 Jan; 12(1):141-52. PubMed ID: 10636936 [TBL] [Abstract][Full Text] [Related]
17. Genetic-based EM algorithm for learning Gaussian mixture models. Pernkopf F; Bouchaffra D IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1344-8. PubMed ID: 16119273 [TBL] [Abstract][Full Text] [Related]
18. Epitope profiling via mixture modeling of ranked data. Mollica C; Tardella L Stat Med; 2014 Sep; 33(21):3738-58. PubMed ID: 24903256 [TBL] [Abstract][Full Text] [Related]
19. Gaussian mixture density modeling, decomposition, and applications. Zhuang X; Huang Y; Palaniappan K; Zhao Y IEEE Trans Image Process; 1996; 5(9):1293-302. PubMed ID: 18285218 [TBL] [Abstract][Full Text] [Related]
20. A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. Bouguila N; Ziou D IEEE Trans Neural Netw; 2010 Jan; 21(1):107-22. PubMed ID: 19963696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]