These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27510431)

  • 1. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.
    Paschoal D; Guerra CF; de Oliveira MA; Ramalho TC; Dos Santos HF
    J Comput Chem; 2016 Oct; 37(26):2360-73. PubMed ID: 27510431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties.
    Jorge FE; Canal Neto A; Camiletti GG; Machado SF
    J Chem Phys; 2009 Feb; 130(6):064108. PubMed ID: 19222268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-electron scalar relativistic basis sets for the elements Rb-Xe.
    Rolfes JD; Neese F; Pantazis DA
    J Comput Chem; 2020 Jul; 41(20):1842-1849. PubMed ID: 32484577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of All-Electron Basis Sets and the Scalar Relativistic Corrections in the Structure and Electronic Properties of Niobium Clusters.
    Pansini FNN; Neto AC; de Campos M; de Aquino RM
    J Phys Chem A; 2017 Aug; 121(30):5728-5734. PubMed ID: 28686436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmented all-electron basis sets of triple zeta quality for the lanthanides: application to structure calculations of lanthanide monoxides.
    de Oliveira AZ; Ferreira IB; Campos CT; Jorge FE; Fantin PA
    J Mol Model; 2019 Jan; 25(2):38. PubMed ID: 30648221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller-Plesset perturbation theory and the second-order Douglas-Kroll-Hess transformation.
    Sandhoefer B; Kossmann S; Neese F
    J Chem Phys; 2013 Mar; 138(10):104102. PubMed ID: 23514460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of Tc-99 NMR Chemical Shifts in Technetium Complexes with Radiopharmaceutical Applications.
    de Andrade TFCB; Dos Santos HF; Fonseca Guerra C; Paschoal DFS
    J Phys Chem A; 2022 Aug; 126(32):5434-5448. PubMed ID: 35930743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.
    Pantazis DA; Chen XY; Landis CR; Neese F
    J Chem Theory Comput; 2008 Jun; 4(6):908-19. PubMed ID: 26621232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2015 Jul; 53(7):485-92. PubMed ID: 25998325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio relativistic potential energy surfaces of benzene-Xe complex with application to intermolecular vibrations.
    Shirkov L; Sladek V; Makarewicz J
    J Chem Phys; 2020 Mar; 152(11):114116. PubMed ID: 32199439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?
    Tsipis AC; Karapetsas IN
    Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalar relativistic calculations of hyperfine coupling constants using ab initio density matrix renormalization group method in combination with third-order Douglas-Kroll-Hess transformation: case studies on 4d transition metals.
    Nguyen Lan T; Kurashige Y; Yanai T
    J Chem Theory Comput; 2015 Jan; 11(1):73-81. PubMed ID: 26574205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements.
    Hill JG; Peterson KA
    J Chem Phys; 2017 Dec; 147(24):244106. PubMed ID: 29289120
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    De Souza LA; Almeida ER; Cunha E Silva JH; Paschoal DFS; Belchior JC; Dos Santos HF; De Almeida WB
    RSC Adv; 2020 Dec; 11(1):599-611. PubMed ID: 35423010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.
    Truflandier LA; Autschbach J
    J Am Chem Soc; 2010 Mar; 132(10):3472-83. PubMed ID: 20166712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic high-order Douglas-Kroll-Hess electric field gradients.
    Mastalerz R; Barone G; Lindh R; Reiher M
    J Chem Phys; 2007 Aug; 127(7):074105. PubMed ID: 17718604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects.
    Gohr S; Hrobárik P; Repiský M; Komorovský S; Ruud K; Kaupp M
    J Phys Chem A; 2015 Dec; 119(51):12892-905. PubMed ID: 26636191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.