These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27510646)

  • 1. Perforating domed plasmonic films for broadband and omnidirectional antireflection.
    Ai B; Gu P; Möhwald H; Zhang G
    Nanoscale; 2016 Aug; 8(34):15473-8. PubMed ID: 27510646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films.
    Toma M; Loget G; Corn RM
    Nano Lett; 2013; 13(12):6164-9. PubMed ID: 24195672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical reflectionless potentials for broadband, omnidirectional antireflection.
    Thekkekara LV; Achanta VG; Gupta SD
    Opt Express; 2014 Jul; 22(14):17382-6. PubMed ID: 25090551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications.
    Behera S; Fry PW; Francis H; Jin CY; Hopkinson M
    Sci Rep; 2020 Apr; 10(1):6269. PubMed ID: 32286418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.
    Han L; Zhao H
    Opt Express; 2014 Dec; 22(26):31907-16. PubMed ID: 25607159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically Assembled Ultrablack Surface with Omnidirectional and Broadband Light Absorption.
    Li H; Shen C; Sun S; Li C; Zhang H; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11369-11378. PubMed ID: 36800269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omnidirectional and broadband photon harvesting in self-organized Ge columnar nanovoids.
    Chowdhury D; Mondal S; Secchi M; Giordano MC; Vanzetti L; Barozzi M; Bersani M; Giubertoni D; Buatier de Mongeot F
    Nanotechnology; 2022 May; 33(30):. PubMed ID: 35385839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures.
    Hao J; Qiu CW; Qiu M; Zouhdi S
    Opt Lett; 2012 Dec; 37(23):4955-7. PubMed ID: 23202102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Erasable Nanocone Antireflection Films Based on the Shape Memory Effect of Polyvinyl Alcohol (PVA) Polymers.
    Li P; Han Y; Wang W; Chen X; Jin P; Liu S
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-layer-deposited silver and dielectric nanostructures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films.
    Ko CT; Yang PS; Han YY; Wang WC; Huang JJ; Lee YH; Tsai YJ; Shieh J; Chen MJ
    Nanotechnology; 2015 Jul; 26(26):265702. PubMed ID: 26057412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon.
    Wang Y; Liu YP; Liang HL; Mei ZX; Du XL
    Phys Chem Chem Phys; 2013 Feb; 15(7):2345-50. PubMed ID: 23296192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells.
    Kuo SY; Hsieh MY; Han HV; Lai FI; Chuang TY; Yu P; Lin CC; Kuo HC
    Opt Express; 2014 Feb; 22(3):2860-7. PubMed ID: 24663578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband and omnidirectional light harvesting enhancement of fluorescent SiC.
    Ou Y; Jokubavicius V; Hens P; Kaiser M; Wellmann P; Yakimova R; Syväjärvi M; Ou H
    Opt Express; 2012 Mar; 20(7):7575-9. PubMed ID: 22453436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons.
    Nerkararyan KV; Nerkararyan SK; Bozhevolnyi SI
    Opt Lett; 2011 Nov; 36(22):4311-3. PubMed ID: 22089547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.
    Wang W; Zhang W; Fang X; Huang Y; Liu Q; Bai M; Zhang D
    Opt Lett; 2014 Jul; 39(14):4208-11. PubMed ID: 25121688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells.
    Liu Y; Sun SH; Xu J; Zhao L; Sun HC; Li J; Mu WW; Xu L; Chen KJ
    Opt Express; 2011 Sep; 19 Suppl 5():A1051-6. PubMed ID: 21935247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.