These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva. Lis M; Bhatt S; Schoenly NE; Lee AY; Nislow C; Bobek LA Antimicrob Agents Chemother; 2013 Feb; 57(2):840-7. PubMed ID: 23208710 [TBL] [Abstract][Full Text] [Related]
3. Exploring the mode of action of antimicrobial peptide MUC7 12-mer by fitness profiling of Saccharomyces cerevisiae genomewide mutant collection. Lis M; Fuss JR; Bobek LA Antimicrob Agents Chemother; 2009 Sep; 53(9):3762-9. PubMed ID: 19596888 [TBL] [Abstract][Full Text] [Related]
4. Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts. Koo JC; Lee B; Young ME; Koo SC; Cooper JA; Baek D; Lim CO; Lee SY; Yun DJ; Cho MJ Plant Cell Physiol; 2004 Nov; 45(11):1669-80. PubMed ID: 15574843 [TBL] [Abstract][Full Text] [Related]
5. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Koo JC; Lee SY; Chun HJ; Cheong YH; Choi JS; Kawabata S; Miyagi M; Tsunasawa S; Ha KS; Bae DW; Han CD; Lee BL; Cho MJ Biochim Biophys Acta; 1998 Jan; 1382(1):80-90. PubMed ID: 9507071 [TBL] [Abstract][Full Text] [Related]
6. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Thevissen K; Osborn RW; Acland DP; Broekaert WF Mol Plant Microbe Interact; 2000 Jan; 13(1):54-61. PubMed ID: 10656585 [TBL] [Abstract][Full Text] [Related]
7. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Koo JC; Chun HJ; Park HC; Kim MC; Koo YD; Koo SC; Ok HM; Park SJ; Lee SH; Yun DJ; Lim CO; Bahk JD; Lee SY; Cho MJ Plant Mol Biol; 2002 Oct; 50(3):441-52. PubMed ID: 12369620 [TBL] [Abstract][Full Text] [Related]
8. The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. Platara M; Ruiz A; Serrano R; Palomino A; Moreno F; Ariño J J Biol Chem; 2006 Dec; 281(48):36632-42. PubMed ID: 17023428 [TBL] [Abstract][Full Text] [Related]
9. Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. de Beer A; Vivier MA BMC Plant Biol; 2008 Jul; 8():75. PubMed ID: 18611251 [TBL] [Abstract][Full Text] [Related]
10. Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in Culver KD; Sadecki PW; Jackson JK; Brown ZA; Hnilica ME; Wu J; Shaw LN; Wommack AJ; Hicks LM J Proteome Res; 2024 Aug; 23(8):2948-2960. PubMed ID: 38367000 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress. Roque A; Petrezsélyová S; Serra-Cardona A; Ariño J BMC Genomics; 2016 Aug; 17():662. PubMed ID: 27544903 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae. Branco P; Francisco D; Monteiro M; Almeida MG; Caldeira J; Arneborg N; Prista C; Albergaria H Appl Microbiol Biotechnol; 2017 Jan; 101(1):159-171. PubMed ID: 27502415 [TBL] [Abstract][Full Text] [Related]
13. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. Mira NP; Lourenço AB; Fernandes AR; Becker JD; Sá-Correia I FEMS Yeast Res; 2009 Mar; 9(2):202-16. PubMed ID: 19220866 [TBL] [Abstract][Full Text] [Related]
14. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Casamayor A; Serrano R; Platara M; Casado C; Ruiz A; Ariño J Biochem J; 2012 May; 444(1):39-49. PubMed ID: 22372618 [TBL] [Abstract][Full Text] [Related]
15. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Lee OS; Lee B; Park N; Koo JC; Kim YH; Prasad D T; Karigar C; Chun HJ; Jeong BR; Kim DH; Nam J; Yun JG; Kwak SS; Cho MJ; Yun DJ Phytochemistry; 2003 Apr; 62(7):1073-9. PubMed ID: 12591259 [TBL] [Abstract][Full Text] [Related]
16. Intervention of Bro1 in pH-responsive Rim20 localization in Saccharomyces cerevisiae. Boysen JH; Subramanian S; Mitchell AP Eukaryot Cell; 2010 Apr; 9(4):532-8. PubMed ID: 20190076 [TBL] [Abstract][Full Text] [Related]
17. Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response. Andreev YA; Korostyleva TV; Slavokhotova AA; Rogozhin EA; Utkina LL; Vassilevski AA; Grishin EV; Egorov TA; Odintsova TI Biochimie; 2012 Apr; 94(4):1009-16. PubMed ID: 22227377 [TBL] [Abstract][Full Text] [Related]
18. Isolation, functional characterization, and biological properties of MCh-AMP1, a novel antifungal peptide from Matricaria chamomilla L. Seyedjavadi SS; Khani S; Zare-Zardini H; Halabian R; Goudarzi M; Khatami S; Imani Fooladi AA; Amani J; Razzaghi-Abyaneh M Chem Biol Drug Des; 2019 May; 93(5):949-959. PubMed ID: 30773822 [TBL] [Abstract][Full Text] [Related]
19. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. Thevissen K; François IE; Takemoto JY; Ferket KK; Meert EM; Cammue BP FEMS Microbiol Lett; 2003 Sep; 226(1):169-73. PubMed ID: 13129623 [TBL] [Abstract][Full Text] [Related]
20. Integrative responses to high pH stress in S. cerevisiae. Ariño J OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]