These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 27510723)
21. The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. Maeda T FEBS J; 2012 Apr; 279(8):1407-13. PubMed ID: 22360598 [TBL] [Abstract][Full Text] [Related]
22. Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in Kipanga PN; Demuyser L; Vrijdag J; Eskes E; D'hooge P; Matasyoh J; Callewaert G; Winderickx J; Van Dijck P; Luyten W Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071169 [TBL] [Abstract][Full Text] [Related]
23. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Heath VL; Shaw SL; Roy S; Cyert MS Eukaryot Cell; 2004 Jun; 3(3):695-704. PubMed ID: 15189990 [TBL] [Abstract][Full Text] [Related]
24. Characterization and antimicrobial evaluation of SpPR-AMP1, a proline-rich antimicrobial peptide from the mud crab Scylla paramamosain. Imjongjirak C; Amphaiphan P; Charoensapsri W; Amparyup P Dev Comp Immunol; 2017 Sep; 74():209-216. PubMed ID: 28479344 [TBL] [Abstract][Full Text] [Related]
25. The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast. Yan H; Fang T; Xu H; Jiang L Biochem Biophys Res Commun; 2020 Nov; 532(3):453-458. PubMed ID: 32891431 [TBL] [Abstract][Full Text] [Related]
26. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. Arita A; Zhou X; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz A; Klein CB; Dai W; Begley TJ; Costa M BMC Genomics; 2009 Nov; 10():524. PubMed ID: 19917080 [TBL] [Abstract][Full Text] [Related]
27. Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Boysen JH; Mitchell AP Mol Biol Cell; 2006 Mar; 17(3):1344-53. PubMed ID: 16407402 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. Viladevall L; Serrano R; Ruiz A; Domenech G; Giraldo J; Barceló A; Ariño J J Biol Chem; 2004 Oct; 279(42):43614-24. PubMed ID: 15299026 [TBL] [Abstract][Full Text] [Related]
29. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Serrano R; Ruiz A; Bernal D; Chambers JR; Ariño J Mol Microbiol; 2002 Dec; 46(5):1319-33. PubMed ID: 12453218 [TBL] [Abstract][Full Text] [Related]
30. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Thevissen K; Terras FR; Broekaert WF Appl Environ Microbiol; 1999 Dec; 65(12):5451-8. PubMed ID: 10584003 [TBL] [Abstract][Full Text] [Related]
31. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Cornet M; Bidard F; Schwarz P; Da Costa G; Blanchin-Roland S; Dromer F; Gaillardin C Infect Immun; 2005 Dec; 73(12):7977-87. PubMed ID: 16299290 [TBL] [Abstract][Full Text] [Related]
32. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. López-García B; Gandía M; Muñoz A; Carmona L; Marcos JF BMC Microbiol; 2010 Nov; 10():289. PubMed ID: 21078184 [TBL] [Abstract][Full Text] [Related]
33. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Slavokhotova AA; Shelenkov AA; Korostyleva TV; Rogozhin EA; Melnikova NV; Kudryavtseva AV; Odintsova TI Biochimie; 2017 Apr; 135():15-27. PubMed ID: 28038935 [TBL] [Abstract][Full Text] [Related]
34. The PacC-family protein Rim101 prevents selenite toxicity in Saccharomyces cerevisiae by controlling vacuolar acidification. Pérez-Sampietro M; Herrero E Fungal Genet Biol; 2014 Oct; 71():76-85. PubMed ID: 25239548 [TBL] [Abstract][Full Text] [Related]
35. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. R Shukurov R; D Voblikova V; Nikonorova AK; Komakhin RA; V Komakhina V; A Egorov T; V Grishin E; V Babakov A Transgenic Res; 2012 Apr; 21(2):313-25. PubMed ID: 21706181 [TBL] [Abstract][Full Text] [Related]
36. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166 [TBL] [Abstract][Full Text] [Related]
37. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. Singh-Babak SD; Shekhar T; Smith AM; Giaever G; Nislow C; Cowen LE Mol Biosyst; 2012 Oct; 8(10):2575-84. PubMed ID: 22751784 [TBL] [Abstract][Full Text] [Related]
38. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Serra-Cardona A; Petrezsélyová S; Canadell D; Ramos J; Ariño J Mol Cell Biol; 2014 Dec; 34(24):4420-35. PubMed ID: 25266663 [TBL] [Abstract][Full Text] [Related]
39. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Slavokhotova AA; Shelenkov AA; Odintsova TI Plant Mol Biol; 2015 Oct; 89(3):203-14. PubMed ID: 26369913 [TBL] [Abstract][Full Text] [Related]
40. The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity. Yokoyama S; Iida Y; Kawasaki Y; Minami Y; Watanabe K; Yagi F J Pept Sci; 2009 Jul; 15(7):492-7. PubMed ID: 19466694 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]