These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2026 related articles for article (PubMed ID: 27510863)

  • 61. Confined Flow: Consequences and Implications for Bacteria and Biofilms.
    Conrad JC; Poling-Skutvik R
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():175-200. PubMed ID: 29561646
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bacterial interactions in biofilms.
    Moons P; Michiels CW; Aertsen A
    Crit Rev Microbiol; 2009; 35(3):157-68. PubMed ID: 19624252
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Emerging interactions between matrix components during biofilm development.
    Payne DE; Boles BR
    Curr Genet; 2016 Feb; 62(1):137-41. PubMed ID: 26515441
    [TBL] [Abstract][Full Text] [Related]  

  • 64. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
    Kobayashi K; Iwano M
    Mol Microbiol; 2012 Jul; 85(1):51-66. PubMed ID: 22571672
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biofilm formation as a microbial strategy to assimilate particulate substrates.
    Sivadon P; Barnier C; Urios L; Grimaud R
    Environ Microbiol Rep; 2019 Dec; 11(6):749-764. PubMed ID: 31342619
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae.
    Izano EA; Sadovskaya I; Vinogradov E; Mulks MH; Velliyagounder K; Ragunath C; Kher WB; Ramasubbu N; Jabbouri S; Perry MB; Kaplan JB
    Microb Pathog; 2007 Jul; 43(1):1-9. PubMed ID: 17412552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Archaeal biofilm formation.
    van Wolferen M; Orell A; Albers SV
    Nat Rev Microbiol; 2018 Nov; 16(11):699-713. PubMed ID: 30097647
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].
    Gera I
    Fogorv Sz; 2008 Jun; 101(3):91-9. PubMed ID: 18756844
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.
    Katharios-Lanwermeyer S; Xi C; Jakubovics NS; Rickard AH
    Biofouling; 2014; 30(10):1235-51. PubMed ID: 25421394
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multi-species biofilms: how to avoid unfriendly neighbors.
    Rendueles O; Ghigo JM
    FEMS Microbiol Rev; 2012 Sep; 36(5):972-89. PubMed ID: 22273363
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation.
    Lorite GS; de Souza AA; Neubauer D; Mizaikoff B; Kranz C; Cotta MA
    Colloids Surf B Biointerfaces; 2013 Feb; 102():519-25. PubMed ID: 23164974
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges.
    Peterson BW; He Y; Ren Y; Zerdoum A; Libera MR; Sharma PK; van Winkelhoff AJ; Neut D; Stoodley P; van der Mei HC; Busscher HJ
    FEMS Microbiol Rev; 2015 Mar; 39(2):234-45. PubMed ID: 25725015
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bacterial resistance to antibiotics: the role of biofilms.
    Hoyle BD; Costerton JW
    Prog Drug Res; 1991; 37():91-105. PubMed ID: 1763187
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biofilm formation by Borrelia burgdorferi sensu lato.
    Timmaraju VA; Theophilus PA; Balasubramanian K; Shakih S; Luecke DF; Sapi E
    FEMS Microbiol Lett; 2015 Aug; 362(15):fnv120. PubMed ID: 26208529
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms.
    Wang C; Miao L; Hou J; Wang P; Qian J; Dai S
    Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G; Maisetta G; Esin S
    Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Antimicrobial peptides as potential tool to fight bacterial biofilm.
    Dawgul M; Maciejewska M; Jaskiewicz M; Karafova A; Kamysz W
    Acta Pol Pharm; 2014; 71(1):39-47. PubMed ID: 24779193
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dynamics of biofilm formation during anaerobic digestion of organic waste.
    Langer S; Schropp D; Bengelsdorf FR; Othman M; Kazda M
    Anaerobe; 2014 Oct; 29():44-51. PubMed ID: 24342346
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia.
    Carlson RP; Beck AE; Phalak P; Fields MW; Gedeon T; Hanley L; Harcombe WR; Henson MA; Heys JJ
    Biochem Soc Trans; 2018 Apr; 46(2):269-284. PubMed ID: 29472366
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.
    Ma L; Wang S; Wang D; Parsek MR; Wozniak DJ
    FEMS Immunol Med Microbiol; 2012 Jul; 65(2):377-80. PubMed ID: 22309106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 102.