BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27511)

  • 1. Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms.
    Stankovich MT; Schopfer LM; Massey V
    J Biol Chem; 1978 Jul; 253(14):4971-9. PubMed ID: 27511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox potentials of the flavoprotein lactate oxidase.
    Stankovich M; Fox B
    Biochemistry; 1983 Sep; 22(19):4466-72. PubMed ID: 6626511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry.
    Vogt S; Schneider M; Schäfer-Eberwein H; Nöll G
    Anal Chem; 2014 Aug; 86(15):7530-5. PubMed ID: 25007396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrophotometric kinetic study and analytical implications of the glucose oxidase-catalyzed reduction of [MIII(LL)2Cl2]+ complexes by D-glucose (M = Os and Ru, LL = 2,2'-bipyridine and 1,10-phenanthroline type ligands).
    Ryabov AD; Firsova YN; Ershov AYu ; Dementiev IA
    J Biol Inorg Chem; 1999 Apr; 4(2):175-82. PubMed ID: 10499089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidative part of the glucose-oxidase reaction.
    Leskovac V; Svircević J; Radulović M
    Int J Biochem; 1989; 21(10):1083-8. PubMed ID: 2583344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of glucose oxidase catalyzed electron transfer mediated by sulfur and selenium compounds.
    Kulys J; Buch-Rasmussen T; Bechgaard K; Marcinkeviciene J; Christensen JB; Hansen HE
    FEBS Lett; 1993 Aug; 329(1-2):205-9. PubMed ID: 8354396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for superoxide radical production by a simple flavoprotein: glucose oxidase.
    al-Bekairi AM; Nagi MN; Shoeb HA; al-Sawaf HA
    Biochem Mol Biol Int; 1994 Sep; 34(2):233-8. PubMed ID: 7849633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation-reduction properties of glycolate oxidase.
    Pace C; Stankovich M
    Biochemistry; 1986 May; 25(9):2516-22. PubMed ID: 3521736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative kinetics of reactions catalyzed by glucose oxidase in the presence of different electron acceptors].
    Aleksandrovskiĩ IaA; Bezhikina LV; Rodionov IuV
    Biokhimiia; 1981 Apr; 46(4):708-16. PubMed ID: 7284485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components.
    Bhattacharyya A; Tollin G; McIntire W; Singer TP
    Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DT-diaphorase. Redox potential, steady-state, and rapid reaction studies.
    Tedeschi G; Chen S; Massey V
    J Biol Chem; 1995 Jan; 270(3):1198-204. PubMed ID: 7836380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the oxidation-reduction potentials for two-electron and four-electron reduction of lipoamide dehydrogenase from pig heart.
    Matthews RG; Williams CH
    J Biol Chem; 1976 Jul; 251(13):3956-64. PubMed ID: 6467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase.
    Roth JP; Klinman JP
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):62-7. PubMed ID: 12506204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and thermodynamic characterization of glucose oxidase from a newly isolated strain of Aspergillus niger.
    Bhatti HN; Madeeha M; Asgher M; Batool N
    Can J Microbiol; 2006 Jun; 52(6):519-24. PubMed ID: 16788719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the oxidation-reduction potentials of recombinant ferredoxin-NADP+ reductase from spinach chloroplasts.
    Corrado ME; Aliverti A; Zanetti G; Mayhew SG
    Eur J Biochem; 1996 Aug; 239(3):662-7. PubMed ID: 8774710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox potential-pH properties of the flavoprotein L-amino-acid oxidase.
    Stankovich MT; Fox BG
    Biochim Biophys Acta; 1984 Apr; 786(1-2):49-56. PubMed ID: 6712956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Thioflavins as active site probes of flavoproteins. General properties.
    Massey V; Claiborne A; Biemann M; Ghisla S
    J Biol Chem; 1984 Aug; 259(15):9667-78. PubMed ID: 6146619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.