BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27511008)

  • 1. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci; 2016 Aug; 36(32):8341-55. PubMed ID: 27511008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.
    Oza CS; Giszter SF
    Exp Neurol; 2014 Jun; 256():57-69. PubMed ID: 24704619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates.
    Giszter S; Davies MR; Ramakrishnan A; Udoekwere UI; Kargo WJ
    J Neurophysiol; 2008 Aug; 100(2):839-51. PubMed ID: 18509082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon J; Schmitt R
    J Biomech Eng; 2011 Dec; 133(12):121007. PubMed ID: 22206424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.
    Hamlin M; Traughber T; Reinkensmeyer DJ; de Leon RD
    J Neurosci Methods; 2015 May; 246():134-41. PubMed ID: 25794460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training.
    Cha J; Heng C; Reinkensmeyer DJ; Roy RR; Edgerton VR; De Leon RD
    J Neurotrauma; 2007 Jun; 24(6):1000-12. PubMed ID: 17600516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.
    Hinahon E; Estrada C; Tong L; Won DS; de Leon RD
    Neurorehabil Neural Repair; 2017 Aug; 31(8):746-757. PubMed ID: 28741434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection.
    Kao T; Shumsky JS; Knudsen EB; Murray M; Moxon KA
    J Neurophysiol; 2011 Nov; 106(5):2662-74. PubMed ID: 21865438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats.
    de Leon RD; Acosta CN
    J Neurotrauma; 2006 Jul; 23(7):1147-63. PubMed ID: 16866627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindlimb loading determines stepping quantity and quality following spinal cord transection.
    Timoszyk WK; Nessler JA; Acosta C; Roy RR; Edgerton VR; Reinkensmeyer DJ; de Leon R
    Brain Res; 2005 Jul; 1050(1-2):180-9. PubMed ID: 15979592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury.
    Shibata T; Tashiro S; Shinozaki M; Hashimoto S; Matsumoto M; Nakamura M; Okano H; Nagoshi N
    Exp Neurol; 2021 Nov; 345():113834. PubMed ID: 34370998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling--implications for rehabilitation.
    Giszter SF; Hockensmith G; Ramakrishnan A; Udoekwere UI
    Ann N Y Acad Sci; 2010 Jun; 1198():279-93. PubMed ID: 20536943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-specificity vs. ceiling effect: step-training in shallow water after spinal cord injury.
    Kuerzi J; Brown EH; Shum-Siu A; Siu A; Burke D; Morehouse J; Smith RR; Magnuson DS
    Exp Neurol; 2010 Jul; 224(1):178-87. PubMed ID: 20302862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes.
    Field-Fote EC; Lindley SD; Sherman AL
    J Neurol Phys Ther; 2005 Sep; 29(3):127-37. PubMed ID: 16398945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury.
    Morrison SA; Lorenz D; Eskay CP; Forrest GF; Basso DM
    Arch Phys Med Rehabil; 2018 Mar; 99(3):555-562. PubMed ID: 29107040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pelvic implant orthosis in rodents, for spinal cord injury rehabilitation, and for brain machine interface research: construction, surgical implantation and validation.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci Methods; 2014 Jan; 222():199-206. PubMed ID: 24269175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscous field training induces after effects but hinders recovery of overground locomotion following spinal cord injury in rats.
    Neckel ND; Dai H
    Behav Brain Res; 2021 Aug; 412():113415. PubMed ID: 34153426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only.
    Alluin O; Delivet-Mongrain H; Rossignol S
    J Neurophysiol; 2015 Sep; 114(3):1931-46. PubMed ID: 26203108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.