These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 27511107)
1. Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. Liu ST; Horng JL; Chen PY; Hwang PP; Lin LY Sci Rep; 2016 Aug; 6():31433. PubMed ID: 27511107 [TBL] [Abstract][Full Text] [Related]
2. Role of the Basolateral Na Liu ST; Horng JL; Lin LY Front Physiol; 2022; 13():870967. PubMed ID: 35399277 [TBL] [Abstract][Full Text] [Related]
3. Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. Liu ST; Tsung L; Horng JL; Lin LY Am J Physiol Regul Integr Comp Physiol; 2013 Aug; 305(3):R242-51. PubMed ID: 23678031 [TBL] [Abstract][Full Text] [Related]
4. Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Horng JL; Yu LL; Liu ST; Chen PY; Lin LY Sci Rep; 2017 Nov; 7(1):16215. PubMed ID: 29176723 [TBL] [Abstract][Full Text] [Related]
5. Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Shen WP; Horng JL; Lin LY Am J Physiol Regul Integr Comp Physiol; 2011 Apr; 300(4):R858-68. PubMed ID: 21191003 [TBL] [Abstract][Full Text] [Related]
6. Past seawater experience enhances seawater adaptability in medaka, Oryzias latipes. Miyanishi H; Inokuchi M; Nobata S; Kaneko T Zoological Lett; 2016; 2():12. PubMed ID: 27307998 [TBL] [Abstract][Full Text] [Related]
7. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments. Kang CK; Yang WK; Lin ST; Liu CC; Lin HM; Chen HH; Cheng CW; Lee TH; Hwang PP Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):181-91. PubMed ID: 22960413 [TBL] [Abstract][Full Text] [Related]
8. The inner opercular membrane of the euryhaline teleost: a useful surrogate model for comparisons of different characteristics of ionocytes between seawater- and freshwater-acclimated medaka. Kang CK; Yang SY; Lin ST; Lee TH Histochem Cell Biol; 2015 Jan; 143(1):69-81. PubMed ID: 25163555 [TBL] [Abstract][Full Text] [Related]
9. A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Hsu HH; Lin LY; Tseng YC; Horng JL; Hwang PP Cell Tissue Res; 2014 Jul; 357(1):225-43. PubMed ID: 24842048 [TBL] [Abstract][Full Text] [Related]
10. Salinity and prolactin regulate Breves JP; Posada MA; Tao YT; Shaughnessy CA Am J Physiol Regul Integr Comp Physiol; 2024 Nov; 327(5):R479-R485. PubMed ID: 39250544 [TBL] [Abstract][Full Text] [Related]
11. Distribution and dynamics of branchial ionocytes in houndshark reared in full-strength and diluted seawater environments. Takabe S; Inokuchi M; Yamaguchi Y; Hyodo S Comp Biochem Physiol A Mol Integr Physiol; 2016 Aug; 198():22-32. PubMed ID: 27040185 [TBL] [Abstract][Full Text] [Related]
12. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost. Wood CM; Bucking C; Grosell M J Exp Biol; 2010 Aug; 213(Pt 15):2681-92. PubMed ID: 20639430 [TBL] [Abstract][Full Text] [Related]
13. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Inokuchi M; Hiroi J; Watanabe S; Lee KM; Kaneko T Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):151-8. PubMed ID: 18619551 [TBL] [Abstract][Full Text] [Related]
14. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater. Christensen AK; Hiroi J; Schultz ET; McCormick SD J Exp Biol; 2012 Feb; 215(Pt 4):642-52. PubMed ID: 22279071 [TBL] [Abstract][Full Text] [Related]
15. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus. Tang CH; Lee TH Physiol Biochem Zool; 2011; 84(1):54-67. PubMed ID: 21091354 [TBL] [Abstract][Full Text] [Related]
16. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change? Bollinger RJ; Madsen SS; Bossus MC; Tipsmark CK J Comp Physiol B; 2016 May; 186(4):485-501. PubMed ID: 26920794 [TBL] [Abstract][Full Text] [Related]
17. Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Seo MY; Mekuchi M; Teranishi K; Kaneko T Comp Biochem Physiol A Mol Integr Physiol; 2013 Oct; 166(2):323-32. PubMed ID: 23838143 [TBL] [Abstract][Full Text] [Related]
18. Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance. Kang CK; Tsai HJ; Liu CC; Lee TH; Hwang PP Comp Biochem Physiol A Mol Integr Physiol; 2010 Sep; 157(1):7-18. PubMed ID: 20576485 [TBL] [Abstract][Full Text] [Related]
19. Medaka villin 1-like protein (VILL) is associated with the formation of microvilli induced by decreasing salinities in the absorptive ionocytes. Kang CK; Lee TH Front Zool; 2014 Jan; 11(1):2. PubMed ID: 24410933 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Kang CK; Tsai SC; Lee TH; Hwang PP Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):566-75. PubMed ID: 18692588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]