These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 27511294)

  • 41. Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use.
    Hu K; Jamali M; Moses ZB; Ortega CA; Friedman GN; Xu W; Williams ZM
    Sci Rep; 2018 Jul; 8(1):10583. PubMed ID: 30002452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural dynamics and information representation in microcircuits of motor cortex.
    Tsubo Y; Isomura Y; Fukai T
    Front Neural Circuits; 2013; 7():85. PubMed ID: 23653596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging.
    Mohammed AI; Gritton HJ; Tseng HA; Bucklin ME; Yao Z; Han X
    Sci Rep; 2016 Feb; 6():20986. PubMed ID: 26854041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-lapse microscopy of brain development.
    Köster RW; Fraser SE
    Methods Cell Biol; 2004; 76():207-35. PubMed ID: 15602878
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical Probes for Neurobiological Sensing and Imaging.
    Kim EH; Chin G; Rong G; Poskanzer KE; Clark HA
    Acc Chem Res; 2018 May; 51(5):1023-1032. PubMed ID: 29652127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity.
    Degenhart AD; Bishop WE; Oby ER; Tyler-Kabara EC; Chase SM; Batista AP; Yu BM
    Nat Biomed Eng; 2020 Jul; 4(7):672-685. PubMed ID: 32313100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High accuracy decoding of movement target direction in non-human primates based on common spatial patterns of local field potentials.
    Ince NF; Gupta R; Arica S; Tewfik AH; Ashe J; Pellizzer G
    PLoS One; 2010 Dec; 5(12):e14384. PubMed ID: 21200434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The primate pulvinar nuclei: vision and action.
    Grieve KL; Acuña C; Cudeiro J
    Trends Neurosci; 2000 Jan; 23(1):35-9. PubMed ID: 10631787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease.
    Cramer JV; Gesierich B; Roth S; Dichgans M; Düring M; Liesz A
    Neuroimage; 2019 Oct; 199():570-584. PubMed ID: 31181333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models.
    Aghagolzadeh M; Truccolo W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):272-82. PubMed ID: 26336135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constraints on neural redundancy.
    Hennig JA; Golub MD; Lund PJ; Sadtler PT; Oby ER; Quick KM; Ryu SI; Tyler-Kabara EC; Batista AP; Yu BM; Chase SM
    Elife; 2018 Aug; 7():. PubMed ID: 30109848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.
    Lu Y; Truccolo W; Wagner FB; Vargas-Irwin CE; Ozden I; Zimmermann JB; May T; Agha NS; Wang J; Nurmikko AV
    J Neurophysiol; 2015 Jun; 113(10):3574-87. PubMed ID: 25761956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global organization of neuronal activity only requires unstructured local connectivity.
    Dahmen D; Layer M; Deutz L; Dąbrowska PA; Voges N; von Papen M; Brochier T; Riehle A; Diesmann M; Grün S; Helias M
    Elife; 2022 Jan; 11():. PubMed ID: 35049496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in quantitative colocalization analysis: focus on neuroscience.
    Zinchuk V; Grossenbacher-Zinchuk O
    Prog Histochem Cytochem; 2009; 44(3):125-72. PubMed ID: 19822255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diverse operant control of different motor cortex populations during learning.
    Vendrell-Llopis N; Fang C; Qü AJ; Costa RM; Carmena JM
    Curr Biol; 2022 Apr; 32(7):1616-1622.e5. PubMed ID: 35219429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion.
    Xing D; Truccolo W; Borton DA
    J Neurosci; 2022 Dec; 42(49):9142-9157. PubMed ID: 36283830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two Brains in Action: Joint-Action Coding in the Primate Frontal Cortex.
    Ferrari-Toniolo S; Visco-Comandini F; Battaglia-Mayer A
    J Neurosci; 2019 May; 39(18):3514-3528. PubMed ID: 30804088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Imaging of molecular dynamics regulated by electrical activities in neural circuits and in synapses.
    Fujii R; Ichikawa M; Ozaki M
    Neurosignals; 2008; 16(4):260-77. PubMed ID: 18635943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "Master" neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task.
    Arduin PJ; Frégnac Y; Shulz DE; Ego-Stengel V
    J Neurosci; 2013 May; 33(19):8308-20. PubMed ID: 23658171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.