These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2751145)

  • 1. Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: the effects of pretreatment with a defasciculating dose of pancuronium.
    Lanier WL; Iaizzo PA; Milde JH
    Anesthesiology; 1989 Jul; 71(1):87-95. PubMed ID: 2751145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of intravenous succinylcholine on cerebral function and muscle afferent activity following complete ischemia in halothane-anesthetized dogs.
    Lanier WL; Iaizzo PA; Milde JH
    Anesthesiology; 1990 Sep; 73(3):485-90. PubMed ID: 2393133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral stimulation following succinylcholine in dogs.
    Lanier WL; Milde JH; Michenfelder JD
    Anesthesiology; 1986 May; 64(5):551-9. PubMed ID: 3083726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cerebral effects of pancuronium and atracurium in halothane-anesthetized dogs.
    Lanier WL; Milde JH; Michenfelder JD
    Anesthesiology; 1985 Dec; 63(6):589-97. PubMed ID: 2932982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Cerebral Function by Muscle Afferent Activity, with Reference to Intravenous Succinylcholine.
    Lanier WL
    Anesthesiology; 2023 Feb; 138(2):209-215. PubMed ID: 36629464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cerebral and systemic effects of movement in response to a noxious stimulus in lightly anesthetized dogs. Possible modulation of cerebral function by muscle afferents.
    Lanier WL; Iaizzo PA; Milde JH; Sharbrough FW
    Anesthesiology; 1994 Feb; 80(2):392-401. PubMed ID: 8311321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinylcholine, fasciculations and myoglobinaemia.
    Blanc VF; Vaillancourt G; Brisson G
    Can Anaesth Soc J; 1986 Mar; 33(2):178-84. PubMed ID: 3697814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response to succinylcholine in porcine malignant hyperthermia.
    Iaizzo PA; Wedel DJ
    Anesth Analg; 1994 Jul; 79(1):143-51. PubMed ID: 8010426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of suxamethonium on the cerebrum following disruption of the blood-brain barrier in dogs.
    Lanier WL; Milde JH; Sharbrough FW
    Br J Anaesth; 1990 Nov; 65(5):708-12. PubMed ID: 2123396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid-sequence intubation of head trauma patients: prevention of fasciculations with pancuronium versus minidose succinylcholine.
    Koenig KL
    Ann Emerg Med; 1992 Aug; 21(8):929-32. PubMed ID: 1497159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinylcholine-induced fasciculations in denervated rat muscles as measured using 31P-NMR spectroscopy: the effect of pretreatment with dantrolene or vecuronium.
    Mizogami M; Fujibayashi T; Goto Y
    Acta Anaesthesiol Scand; 1998 Apr; 42(4):472-7. PubMed ID: 9563869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidocaine modifies the effect of succinylcholine on muscle oxygen consumption in dogs.
    Fukuda S; Wakuta K; Ishikawa T; Oshita S; Sakabe T; Takeshita H
    Anesth Analg; 1987 Apr; 66(4):325-8. PubMed ID: 3565794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waiting time after non-depolarizing relaxants alter muscle fasciculation response to succinylcholine.
    Pinchak AC; Smith CE; Shepard LS; Patterson L
    Can J Anaesth; 1994 Mar; 41(3):206-12. PubMed ID: 7910525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade.
    Minton MD; Grosslight K; Stirt JA; Bedford RF
    Anesthesiology; 1986 Aug; 65(2):165-9. PubMed ID: 2874752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of PaCO2 on the cerebrovascular response to nitrous oxide in the halothane-anesthetized rabbit.
    Todd MM
    Anesth Analg; 1987 Nov; 66(11):1090-5. PubMed ID: 3116886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat.
    Todd MM; Drummond JC
    Anesthesiology; 1984 Apr; 60(4):276-82. PubMed ID: 6703382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoflurane, halothane, and regional cerebral blood flow at various levels of PaCO2 in rabbits.
    Scheller MS; Todd MM; Drummond JC
    Anesthesiology; 1986 May; 64(5):598-604. PubMed ID: 3083728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diazepam does not prevent succinylcholine-induced fasciculations and myalgia. A comparative evaluation of the effect of diazepam and d-tubocurarine pretreatments.
    Manchikanti L
    Acta Anaesthesiol Scand; 1984 Oct; 28(5):523-8. PubMed ID: 6496012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular effects of enflurane, alone and combined with d-Tubocurarine, pancuronium, and succinylcholine, in man.
    Fogdall RP; Miller RD
    Anesthesiology; 1975 Feb; 42(2):173-8. PubMed ID: 1115366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Profile of the effect of succinylcholine after pre-curarization with atracurium, vecuronium or pancuronium].
    Ebeling BJ; Keienburg T; Hausmann D; Apffelstaedt C
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1996 Jun; 31(5):304-8. PubMed ID: 8767244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.