BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27511739)

  • 1. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.
    Chrenek R; Magnotti LM; Herrera GR; Jha RM; Cardozo DL
    J Comp Neurol; 2017 Feb; 525(3):661-675. PubMed ID: 27511739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier.
    Serwanski DR; Jukkola P; Nishiyama A
    J Comp Neurol; 2017 Feb; 525(3):535-552. PubMed ID: 27448245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and characterization of progenitor cells within the human filum terminale.
    Arvidsson L; Fagerlund M; Jaff N; Ossoinak A; Jansson K; Hägerstrand A; Johansson CB; Brundin L; Svensson M
    PLoS One; 2011; 6(11):e27393. PubMed ID: 22096566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus).
    Pellegrino G; Trubert C; Terrien J; Pifferi F; Leroy D; Loyens A; Migaud M; Baroncini M; Maurage CA; Fontaine C; Prévot V; Sharif A
    J Comp Neurol; 2018 Jun; 526(9):1419-1443. PubMed ID: 29230807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale.
    Jha RM; Chrenek R; Magnotti LM; Cardozo DL
    PLoS One; 2013; 8(6):e65974. PubMed ID: 23762453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons.
    Jha RM; Liu X; Chrenek R; Madsen JR; Cardozo DL
    Neurosurgery; 2013 Jan; 72(1):118-29; discussion 129. PubMed ID: 23096415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system.
    Diotel N; Mérot Y; Coumailleau P; Gueguen MM; Sérandour AA; Salbert G; Kah O
    J Comp Neurol; 2017 Feb; 525(3):478-497. PubMed ID: 27414756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
    Prokopová-Kubinová S; Syková E
    J Neurosci Res; 2000 Nov; 62(4):530-8. PubMed ID: 11070496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.
    Czeisler C; Short A; Nelson T; Gygli P; Ortiz C; Catacutan FP; Stocker B; Cronin J; Lannutti J; Winter J; Otero JJ
    J Comp Neurol; 2016 Dec; 524(17):3485-3502. PubMed ID: 27418162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ventriculus terminalis and filum terminale of the human spinal cord.
    Choi BH; Kim RC; Suzuki M; Choe W
    Hum Pathol; 1992 Aug; 23(8):916-20. PubMed ID: 1644436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analyses of cellularity and proliferative activity reveals the dynamics of the central canal lining during postnatal development of the rat.
    Alexovič Matiašová A; Ševc J; Tomori Z; Gombalová Z; Gedrová Š; Daxnerová Z
    J Comp Neurol; 2017 Feb; 525(3):693-707. PubMed ID: 27503700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of human multipotent neural progenitors from adult filum terminale.
    Varghese M; Olstorn H; Berg-Johnsen J; Moe MC; Murrell W; Langmoen IA
    Stem Cells Dev; 2009 May; 18(4):603-13. PubMed ID: 18652547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-plane description of astroglial populations of OVLT subdivisions in rat: Tanycyte connections to distant parts of third ventricle.
    Kálmán M; Oszwald E; Pócsai K
    J Comp Neurol; 2019 Dec; 527(17):2793-2812. PubMed ID: 31045238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5HTR3A-driven GFP labels immature olfactory sensory neurons.
    Finger TE; Bartel DL; Shultz N; Goodson NB; Greer CA
    J Comp Neurol; 2017 May; 525(7):1743-1755. PubMed ID: 28152579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.
    Filice F; Celio MR; Babalian A; Blum W; Szabolcsi V
    J Comp Neurol; 2017 Oct; 525(15):3266-3285. PubMed ID: 28675430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural microvascular pericytes contribute to human adult neurogenesis.
    Farahani RM; Rezaei-Lotfi S; Simonian M; Xaymardan M; Hunter N
    J Comp Neurol; 2019 Mar; 527(4):780-796. PubMed ID: 30471080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.
    Bernal GM; Peterson DA
    Aging Cell; 2011 Jun; 10(3):466-82. PubMed ID: 21385309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of filum terminale and characteristics of ependymal cells of its central canal in rats.
    Nakano N; Kanekiyo K; Yamada Y; Tamachi M; Suzuki Y; Fukushima M; Saito F; Abe S; Tsukagoshi C; Miyamoto C; Ide C
    Brain Res; 2019 Mar; 1707():208-215. PubMed ID: 30500401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.