These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27511760)

  • 1. Interactions among Drosophila larvae before and during collision.
    Otto N; Risse B; Berh D; Bittern J; Jiang X; Klämbt C
    Sci Rep; 2016 Aug; 6():31564. PubMed ID: 27511760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying subtle locomotion phenotypes of Drosophila larvae using internal structures based on FIM images.
    Risse B; Berh D; Otto N; Jiang X; Klämbt C
    Comput Biol Med; 2015 Aug; 63():269-76. PubMed ID: 25280919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Observation of Locomotion of Drosophila Larvae Facilitates Feasibility of Food-Choice Assays.
    Bittern J; Praetz M; Baldenius M; Klämbt C
    Adv Biol (Weinh); 2022 Apr; 6(4):e2100938. PubMed ID: 34365739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIM$^{2c\;}$: Multicolor, Multipurpose Imaging System to Manipulate and Analyze Animal Behavior.
    Risse B; Otto N; Berh D; Xiaoyi Jiang ; Kiel M; Klambt C
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):610-620. PubMed ID: 28113210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FIM, a novel FTIR-based imaging method for high throughput locomotion analysis.
    Risse B; Thomas S; Otto N; Löpmeier T; Valkov D; Jiang X; Klämbt C
    PLoS One; 2013; 8(1):e53963. PubMed ID: 23349775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae.
    Kohsaka H; Takasu E; Morimoto T; Nose A
    Curr Biol; 2014 Nov; 24(22):2632-42. PubMed ID: 25438948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving Colliding Larvae by Fitting ASM to Random Walker-Based Pre-Segmentations.
    Bian A; Jiang X; Berh D; Risse B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1184-1194. PubMed ID: 31425121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FIM imaging and FIMtrack: two new tools allowing high-throughput and cost effective locomotion analysis.
    Risse B; Otto N; Berh D; Jiang X; Klämbt C
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25591081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of octopamine and tyramine in Drosophila larval locomotion.
    Selcho M; Pauls D; El Jundi B; Stocker RF; Thum AS
    J Comp Neurol; 2012 Nov; 520(16):3764-85. PubMed ID: 22627970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An FIM-Based Long-Term In-Vial Monitoring System for Drosophila Larvae.
    Berh D; Risse B; Michels T; Otto N; Xiaoyi Jiang ; Klambt C
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1862-1874. PubMed ID: 28113288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuromechanical model for Drosophila larval crawling based on physical measurements.
    Sun X; Liu Y; Liu C; Mayumi K; Ito K; Nose A; Kohsaka H
    BMC Biol; 2022 Jun; 20(1):130. PubMed ID: 35701821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.
    Guo Y; Wang Y; Zhang W; Meltzer S; Zanini D; Yu Y; Li J; Cheng T; Guo Z; Wang Q; Jacobs JS; Sharma Y; Eberl DF; Göpfert MC; Jan LY; Jan YN; Wang Z
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7243-8. PubMed ID: 27298354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An RJMCMC-Based Method for Tracking and Resolving Collisions of Drosophila Larvae.
    Michels T; Berh D; Jiang X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):465-474. PubMed ID: 29990198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae.
    Saraswati S; Fox LE; Soll DR; Wu CF
    J Neurobiol; 2004 Mar; 58(4):425-41. PubMed ID: 14978721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing synaptic communication between random interneurons during Drosophila larval locomotion.
    Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL
    Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pair of ascending neurons in the subesophageal zone mediates aversive sensory inputs-evoked backward locomotion in Drosophila larvae.
    Omamiuda-Ishikawa N; Sakai M; Emoto K
    PLoS Genet; 2020 Nov; 16(11):e1009120. PubMed ID: 33137117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model.
    Nishimura Y; Yalgin C; Akimoto S; Doumanis J; Sasajima R; Nukina N; Miyakawa H; Moore AW; Morimoto T
    J Neurogenet; 2010 Dec; 24(4):194-206. PubMed ID: 21087194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Circuits Underlying Fly Larval Locomotion.
    Kohsaka H; Guertin PA; Nose A
    Curr Pharm Des; 2017; 23(12):1722-1733. PubMed ID: 27928962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies?
    Rohlfs M; Hoffmeister TS
    Oecologia; 2004 Aug; 140(4):654-61. PubMed ID: 15232730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior.
    Kim CS; Seong KM; Lee BS; Lee IK; Yang KH; Kim JY; Nam SY
    J Radiat Res; 2015 May; 56(3):475-84. PubMed ID: 25792464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.