These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27511869)
1. Improved methods for evaluating pre-clinical and histological effects of subcutaneous fat reduction using high-intensity focused ultrasound in a porcine model. Kwon TR; Im S; Jang YJ; Oh CT; Choi EJ; Jung SJ; Hong H; Choi YS; Choi SY; Kim YS; Kim BJ Skin Res Technol; 2017 May; 23(2):194-201. PubMed ID: 27511869 [TBL] [Abstract][Full Text] [Related]
2. Improved methods for selective cryolipolysis results in subcutaneous fat layer reduction in a porcine model. Kwon TR; Yoo KH; Oh CT; Shin DH; Choi EJ; Jung SJ; Hong H; Choi YS; Kim BJ Skin Res Technol; 2015 May; 21(2):192-200. PubMed ID: 25220194 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction. Lee HJ; Lee MH; Lee SG; Yeo UC; Chang SE Lasers Surg Med; 2016 Nov; 48(9):878-886. PubMed ID: 27551954 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a novel high-intensity focused ultrasound device: preclinical studies in a porcine model. Jewell ML; Desilets C; Smoller BR Aesthet Surg J; 2011 May; 31(4):429-34. PubMed ID: 21551434 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound. Jewell ML; Solish NJ; Desilets CS Aesthetic Plast Surg; 2011 Oct; 35(5):901-12. PubMed ID: 21461627 [TBL] [Abstract][Full Text] [Related]
6. New waves for fat reduction: high-intensity focused ultrasound. Saedi N; Kaminer M Semin Cutan Med Surg; 2013 Mar; 32(1):26-30. PubMed ID: 24049926 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a novel high-intensity focused ultrasound device for ablating subcutaneous adipose tissue for noninvasive body contouring: safety studies in human volunteers. Gadsden E; Aguilar MT; Smoller BR; Jewell ML Aesthet Surg J; 2011 May; 31(4):401-10. PubMed ID: 21551431 [TBL] [Abstract][Full Text] [Related]
8. Immediate effect and safety of HIFU single treatment for male subcutaneous fat reduction. Guth F; Bitencourt S; Bedinot C; Sinigaglia G; Tassinary JAF J Cosmet Dermatol; 2018 Jun; 17(3):385-389. PubMed ID: 29205814 [TBL] [Abstract][Full Text] [Related]
9. The safety and efficacy of thermal lipolysis of adipose tissue via ultrasound for circumference reduction: An open label, single-arm exploratory study. Otto MJ Lasers Surg Med; 2016 Oct; 48(8):734-741. PubMed ID: 27320384 [TBL] [Abstract][Full Text] [Related]
10. Non-invasive tumescent cryolipolysis using a new 4D handpiece: a comparative study with a porcine model. Jeong SY; Kwon TR; Seok J; Park KY; Kim BJ Skin Res Technol; 2017 Feb; 23(1):79-87. PubMed ID: 27440551 [TBL] [Abstract][Full Text] [Related]
11. A novel transcutaneous, non-focused ultrasound energy delivering device is able to induce subcutaneous adipose tissue destruction in an animal model. Levi A; Amitai DB; Lapidoth M Lasers Surg Med; 2017 Jan; 49(1):110-121. PubMed ID: 27794165 [TBL] [Abstract][Full Text] [Related]
12. Comparison of different energy response for lipolysis using a 1,060-nm laser: An animal study of three pigs. Kwon TR; Kim JH; Jang YN; Lee SE; Hong JY; Yoo KH; Kim BJ Skin Res Technol; 2021 Jan; 27(1):5-14. PubMed ID: 32786153 [TBL] [Abstract][Full Text] [Related]
13. High-intensity focused ultrasound treatment after cryolipolysis may be used to reduce pain: Two case report. Ko EJ; Kwon HJ; Kwon TR; Choi SY; Yoo KH; Kim BJ Dermatol Ther; 2018 Jul; 31(4):e12604. PubMed ID: 29644788 [TBL] [Abstract][Full Text] [Related]
14. [The efficacy and safety study of JCS-01 non-invasive focused ultrasound fat reduction machine]. Cao H; Long X; Zhang H; Xu L; Liu Z; Wang X Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Sep; 36(5):370-2, 381. PubMed ID: 23289345 [TBL] [Abstract][Full Text] [Related]
16. Experimental evaluation of high intensity focused ultrasound for fat reduction of ex vivo porcine adipose tissue. Filippou A; Damianou C J Ultrasound; 2022 Dec; 25(4):815-825. PubMed ID: 35106735 [TBL] [Abstract][Full Text] [Related]
17. High-intensity focused ultrasound for the reduction of subcutaneous adipose tissue using multiple treatment techniques. Robinson DM; Kaminer MS; Baumann L; Burns AJ; Brauer JA; Jewell M; Lupin M; Narurkar VA; Struck SK; Hledik J; Dover JS Dermatol Surg; 2014 Jun; 40(6):641-51. PubMed ID: 24852468 [TBL] [Abstract][Full Text] [Related]
18. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin. Lee S; Kim HJ; Park HJ; Kim HM; Lee SH; Cho SB Lasers Med Sci; 2017 Jul; 32(5):1143-1151. PubMed ID: 28451817 [TBL] [Abstract][Full Text] [Related]
19. Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials. Constanciel E; N'Djin WA; Bessière F; Chavrier F; Grinberg D; Vignot A; Chevalier P; Chapelon JY; Lafon C IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1868-83. PubMed ID: 24658718 [TBL] [Abstract][Full Text] [Related]
20. High-Intensity Focused Ultrasound Ablation Combined with Electrical Passive Exercise for Fast Removal of Body Fat. Tan JS; Lin CC; Cheng JS; Chen GS Plast Reconstr Surg; 2020 Jun; 145(6):1427-1438. PubMed ID: 32195859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]