These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27512137)

  • 1. Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments.
    Drovandi CC; Cusimano N; Psaltis S; Lawson BA; Pettitt AN; Burrage P; Burrage K
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27512137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient time splitting schemes for the monodomain equation in cardiac electrophysiology.
    Lindner LP; Gerach T; Jahnke T; Loewe A; Weiss D; Wieners C
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3666. PubMed ID: 36562492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology.
    Lawson BAJ; Drovandi CC; Cusimano N; Burrage P; Rodriguez B; Burrage K
    Sci Adv; 2018 Jan; 4(1):e1701676. PubMed ID: 29349296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Monte Carlo simulations of cytochrome b6f with experiment using Latin hypercube sampling.
    Schumaker MF; Kramer DM
    Bull Math Biol; 2011 Sep; 73(9):2152-74. PubMed ID: 21221830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programs for calibration-based Monte Carlo simulation of recharge areas.
    Starn JJ; Bagtzoglou AC
    Ground Water; 2012; 50(3):472-6. PubMed ID: 21967487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference in high-dimensional parameter space.
    O'Hare A
    J Comput Biol; 2015 Nov; 22(11):997-1004. PubMed ID: 26176624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.
    Thorn GJ; King JR
    Math Biosci; 2016 Jan; 271():62-79. PubMed ID: 26561777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo.
    Zhang J; Kou SC; Liu JS
    J Chem Phys; 2007 Jun; 126(22):225101. PubMed ID: 17581081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments.
    Leigh JW; Bryant D
    Syst Biol; 2015 Sep; 64(5):741-51. PubMed ID: 26012871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient approach to automate the manual trial and error calibration of activated sludge models.
    Sin G; De Pauw DJ; Weijers S; Vanrolleghem PA
    Biotechnol Bioeng; 2008 Jun; 100(3):516-28. PubMed ID: 18098316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian analysis of interleaved learning and response bias in behavioral experiments.
    Smith AC; Wirth S; Suzuki WA; Brown EN
    J Neurophysiol; 2007 Mar; 97(3):2516-24. PubMed ID: 17182907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian inference based on stationary Fokker-Planck sampling.
    Berrones A
    Neural Comput; 2010 Jun; 22(6):1573-96. PubMed ID: 20141472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.
    Chaudhary N; Tøndel K; Bhatnagar R; dos Santos VA; Puchałka J
    Mol Biosyst; 2016 Mar; 12(3):994-1005. PubMed ID: 26818782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latin hypercube sampling and the sensitivity analysis of a Monte Carlo epidemic model.
    Seaholm SK; Ackerman E; Wu SC
    Int J Biomed Comput; 1988 Oct; 23(1-2):97-112. PubMed ID: 3065249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrating the Discrete Boundary Conditions of a Dynamic Simulation: A Combinatorial Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) Approach.
    Shamas J; Rogers T; Krynkin A; Prisutova J; Gardner P; Horoshenkov KV; Shelley SR; Dickenson P
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Latin hypercube algorithm via translational propagation.
    Pan G; Ye P; Wang P
    ScientificWorldJournal; 2014; 2014():163949. PubMed ID: 25276844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.