These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 27512530)
1. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices. Alapan Y; Hasan MN; Shen R; Gurkan UA J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530 [TBL] [Abstract][Full Text] [Related]
2. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358 [TBL] [Abstract][Full Text] [Related]
3. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional-printing for microfluidics or the other way around? Zhang Y Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534 [TBL] [Abstract][Full Text] [Related]
5. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724 [TBL] [Abstract][Full Text] [Related]
6. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers. Zeraatkar M; de Tullio MD; Percoco G Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481 [TBL] [Abstract][Full Text] [Related]
7. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing. Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Männel MJ; Baysak E; Thiele J Molecules; 2021 May; 26(9):. PubMed ID: 34068649 [TBL] [Abstract][Full Text] [Related]
9. Accessing microfluidics through feature-based design software for 3D printing. Shankles PG; Millet LJ; Aufrecht JA; Retterer ST PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418 [TBL] [Abstract][Full Text] [Related]
10. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication. Kang JW; Jeon J; Lee JY; Jeon JH; Hong J Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258180 [TBL] [Abstract][Full Text] [Related]
11. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing. Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020 [TBL] [Abstract][Full Text] [Related]
12. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels. Chu CH; Burentugs E; Lee D; Owens JM; Liu R; Frazier AB; Sarioglu AF 3D Print Addit Manuf; 2023 Aug; 10(4):609-618. PubMed ID: 37609578 [TBL] [Abstract][Full Text] [Related]
13. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609 [TBL] [Abstract][Full Text] [Related]
14. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392 [TBL] [Abstract][Full Text] [Related]
15. Fabrication Methods for Microfluidic Devices: An Overview. Scott SM; Ali Z Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689 [TBL] [Abstract][Full Text] [Related]
16. Indirect fabrication of versatile 3D microfluidic device by a rotating plate combined 3D printing system. Ha DH; Ko DH; Kim JO; Im DJ; Kim BS; Park SY; Park S; Kim DP; Cho DW RSC Adv; 2018 Nov; 8(66):37693-37699. PubMed ID: 35558598 [TBL] [Abstract][Full Text] [Related]
17. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581 [TBL] [Abstract][Full Text] [Related]
18. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
19. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Deliorman M; Ali DS; Qasaimeh MA Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395 [TBL] [Abstract][Full Text] [Related]
20. A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices. Hornik T; Kempa J; Catterlin J; Kartalov E Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]