These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27512719)

  • 1. Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness.
    Whitford C; Joda A; Jones S; Bao F; Rama P; Elsheikh A
    Eye Vis (Lond); 2016; 3():21. PubMed ID: 27512719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflation experiments and inverse finite element modelling of posterior human sclera.
    Geraghty B; Abass A; Eliasy A; Jones SW; Rama P; Kassem W; Akhtar R; Elsheikh A
    J Biomech; 2020 Jan; 98():109438. PubMed ID: 31679759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional variation in the biomechanical properties of the human sclera.
    Elsheikh A; Geraghty B; Alhasso D; Knappett J; Campanelli M; Rama P
    Exp Eye Res; 2010 May; 90(5):624-33. PubMed ID: 20219460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of stiffening effect induced by UVA/Riboflavin corneal cross-linking using intact porcine eye globes.
    Chang SH; Zhou D; Eliasy A; Li YC; Elsheikh A
    PLoS One; 2020; 15(11):e0240724. PubMed ID: 33147249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combination of the finite element analysis and experimental indentation via the cornea.
    Karimi A; Razaghi R; Sera T; Kudo S
    J Mech Behav Biomed Mater; 2019 Feb; 90():146-154. PubMed ID: 30366305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue.
    Zhou D; Abass A; Eliasy A; Studer HP; Movchan A; Movchan N; Elsheikh A
    J R Soc Interface; 2019 May; 16(154):20180685. PubMed ID: 31039694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Subdomain Method for Mapping the Heterogeneous Mechanical Properties of the Human Posterior Sclera.
    Kollech HG; Ayyalasomayajula A; Behkam R; Tamimi E; Furdella K; Drewry M; Vande Geest JP
    Front Bioeng Biotechnol; 2019; 7():129. PubMed ID: 31214585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different preconditioning protocols on the viscoelastic inflation response of the posterior sclera.
    Bianco G; Levy AM; Grytz R; Fazio MA
    Acta Biomater; 2021 Jul; 128():332-345. PubMed ID: 33932581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scleral mechanics: comparing whole globe inflation and uniaxial testing.
    Lari DR; Schultz DS; Wang AS; Lee OT; Stewart JM
    Exp Eye Res; 2012 Jan; 94(1):128-35. PubMed ID: 22155444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of X-ray scattering microstructure data for implementation in numerical simulations of ocular biomechanical behaviour.
    Zhou D; Eliasy A; Abass A; Markov P; Whitford C; Boote C; Movchan A; Movchan N; Elsheikh A
    PLoS One; 2019; 14(4):e0214770. PubMed ID: 30934028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of scleral mechanical properties from air-puff optical coherence tomography.
    Bronte-Ciriza D; Birkenfeld JS; de la Hoz A; Curatolo A; Germann JA; Villegas L; Varea A; Martínez-Enríquez E; Marcos S
    Biomed Opt Express; 2021 Oct; 12(10):6341-6359. PubMed ID: 34745741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital tomosynthesis based digital volume correlation: A clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load.
    Oravec D; Flynn MJ; Zauel R; Rao S; Yeni YN
    Med Phys; 2019 Oct; 46(10):4553-4562. PubMed ID: 31381174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interferometric ex vivo study of corneal biomechanics under physiologically representative loading, highlighting the role of the limbus in pressure compensation.
    Wilson A; Jones J; Tyrer JR; Marshall J
    Eye Vis (Lond); 2020; 7():43. PubMed ID: 32832574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Corneal Biomechanical Behavior
    Eliasy A; Chen KJ; Vinciguerra R; Lopes BT; Abass A; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A
    Front Bioeng Biotechnol; 2019; 7():105. PubMed ID: 31157217
    [No Abstract]   [Full Text] [Related]  

  • 16. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST.
    Eliasy A; Chen KJ; Vinciguerra R; Maklad O; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A
    Exp Eye Res; 2018 Oct; 175():98-102. PubMed ID: 29908883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evaluation of the viscoelasticity of porcine vitreous.
    Aboulatta A; Abass A; Makarem A; Eliasy A; Zhou D; Chen D; Liu X; Elsheikh A
    J R Soc Interface; 2021 Feb; 18(175):20200849. PubMed ID: 33530856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of freezing and thawing on the biomechanical characteristics of porcine ocular tissues.
    Abass A; Eliasy A; Geraghty B; Elabd M; Hassan A; Elsheikh A
    J Biomech; 2019 Apr; 87():93-99. PubMed ID: 30876736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-globe biomechanics using high-field MRI.
    Voorhees AP; Ho LC; Jan NJ; Tran H; van der Merwe Y; Chan K; Sigal IA
    Exp Eye Res; 2017 Jul; 160():85-95. PubMed ID: 28527594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Modelling Methodology Which Predicts the Structural Behaviour of Vertebral Bodies under Axial Impact Loading: A Finite Element and DIC Study.
    Agostinho Hernandez B; Gill HS; Gheduzzi S
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.