These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27513606)
1. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips. Pensabene V; Costa L; Terekhov AY; Gnecco JS; Wikswo JP; Hofmeister WH ACS Appl Mater Interfaces; 2016 Aug; 8(34):22629-36. PubMed ID: 27513606 [TBL] [Abstract][Full Text] [Related]
2. Novel Microfluidic Colon with an Extracellular Matrix Membrane. Wang C; Tanataweethum N; Karnik S; Bhushan A ACS Biomater Sci Eng; 2018 Apr; 4(4):1377-1385. PubMed ID: 33418668 [TBL] [Abstract][Full Text] [Related]
3. Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip. Mancinelli E; Zushi N; Takuma M; Cheng Chau CC; Parpas G; Fujie T; Pensabene V ACS Appl Mater Interfaces; 2024 Mar; 16(10):13006-13017. PubMed ID: 38414331 [TBL] [Abstract][Full Text] [Related]
4. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
5. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672 [TBL] [Abstract][Full Text] [Related]
6. PDMS-based porous membrane for medical applications: design, development, and fabrication. Keshtiban MM; Zand MM; Ebadi A; Azizi Z Biomed Mater; 2023 May; 18(4):. PubMed ID: 36808922 [TBL] [Abstract][Full Text] [Related]
7. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture. Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of ultrathin spin-coated poly(L-lactic acid) films suitable for cell attachment and curcumin loading. Kulikouskaya V; Chyshankou I; Pinchuk S; Vasilevich I; Volotovski I; Agabekov V Biomed Mater; 2020 Nov; 15(6):065022. PubMed ID: 32640441 [TBL] [Abstract][Full Text] [Related]
9. Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips. QuirĂ³s-Solano WF; Gaio N; Stassen OMJA; Arik YB; Silvestri C; Van Engeland NCA; Van der Meer A; Passier R; Sahlgren CM; Bouten CVC; van den Berg A; Dekker R; Sarro PM Sci Rep; 2018 Sep; 8(1):13524. PubMed ID: 30202042 [TBL] [Abstract][Full Text] [Related]
10. Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems. Gao Y; Zhong M; Yu J; Zhao Z; Yu C; Yu Q; Yao F; Li J; Zhang H ACS Nano; 2024 Mar; 18(11):8168-8179. PubMed ID: 38437515 [TBL] [Abstract][Full Text] [Related]
13. Preparation of patterned ultrathin polymer films. Yang H; Su M; Li K; Jiang L; Song Y; Doi M; Wang J Langmuir; 2014 Aug; 30(31):9436-41. PubMed ID: 25066958 [TBL] [Abstract][Full Text] [Related]
14. PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes. Rathod ML; Ahn J; Saha B; Purwar P; Lee Y; Jeon NL; Lee J ACS Appl Mater Interfaces; 2018 Nov; 10(47):40388-40400. PubMed ID: 30360091 [TBL] [Abstract][Full Text] [Related]
15. Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. Waheed S; Cabot JM; Macdonald NP; Kalsoom U; Farajikhah S; Innis PC; Nesterenko PN; Lewis TW; Breadmore MC; Paull B Sci Rep; 2017 Nov; 7(1):15109. PubMed ID: 29118385 [TBL] [Abstract][Full Text] [Related]
16. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications. Ou J; Ren CL; Pawliszyn J Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320 [TBL] [Abstract][Full Text] [Related]
17. Gas transfer and in vitro and in vivo blood compatibility of a fluorinated polyimide membrane with an ultrathin skin layer. Kawakami H; Nagaoka S; Kubota S ASAIO J; 1996; 42(5):M871-6. PubMed ID: 8945009 [TBL] [Abstract][Full Text] [Related]
18. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices. Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474 [TBL] [Abstract][Full Text] [Related]
19. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]