These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 27513615)
1. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides. Jiji AC; Shine A; Vijayan V Angew Chem Int Ed Engl; 2016 Sep; 55(38):11562-6. PubMed ID: 27513615 [TBL] [Abstract][Full Text] [Related]
2. Direct Observation of the Self-Aggregation of R3R4 Bi-repeat of Tau Protein. Jayan P; Vahid AA; Kizhakkeduth ST; Muhammed SOH; Shibina AB; Vijayan V Chembiochem; 2021 Jun; 22(12):2093-2097. PubMed ID: 33826208 [TBL] [Abstract][Full Text] [Related]
3. Site-specific amino acid D-isomerization of Tau R2 and R3 peptides changes the fibril morphology, resulting in attenuation of Tau aggregation inhibitor potency. Murata T; Ito G; Utsunomiya-Tate N Biochem Biophys Res Commun; 2023 Apr; 654():18-25. PubMed ID: 36878036 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Prion-Like Cross-Talk between a Key Alzheimer's Disease Tau-Fragment R3 and the Type 2 Diabetes Peptide IAPP. Arya S; Claud SL; Cantrell KL; Bowers MT ACS Chem Neurosci; 2019 Nov; 10(11):4757-4765. PubMed ID: 31642657 [TBL] [Abstract][Full Text] [Related]
6. Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR. Ma QF; Li YM; Du JT; Kanazawa K; Nemoto T; Nakanishi H; Zhao YF Biopolymers; 2005 Oct; 79(2):74-85. PubMed ID: 15986501 [TBL] [Abstract][Full Text] [Related]
7. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628 [TBL] [Abstract][Full Text] [Related]
8. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135 [TBL] [Abstract][Full Text] [Related]
9. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. Dammers C; Yolcu D; Kukuk L; Willbold D; Pickhardt M; Mandelkow E; Horn AH; Sticht H; Malhis MN; Will N; Schuster J; Funke SA PLoS One; 2016; 11(12):e0167432. PubMed ID: 28006031 [TBL] [Abstract][Full Text] [Related]
10. Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS. Ma Q; Li Y; Du J; Liu H; Kanazawa K; Nemoto T; Nakanishi H; Zhao Y Peptides; 2006 Apr; 27(4):841-9. PubMed ID: 16225961 [TBL] [Abstract][Full Text] [Related]
11. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association of cis-tau peptide. Barman A; Hamelberg D Proteins; 2015 Mar; 83(3):436-44. PubMed ID: 25524218 [TBL] [Abstract][Full Text] [Related]
12. Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's disease. Daly NL; Hoffmann R; Otvos L; Craik DJ Biochemistry; 2000 Aug; 39(30):9039-46. PubMed ID: 10913317 [TBL] [Abstract][Full Text] [Related]
13. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Annadurai N; Malina L; Malohlava J; Hajdúch M; Das V Biochimie; 2022 Sep; 200():79-86. PubMed ID: 35623497 [TBL] [Abstract][Full Text] [Related]
14. Role of G326 in Determining the Aggregation Propensity of R3 Tau Repeat: Insights from Studies on R1R3 Tau Construct. Sahayaraj AE; Abdul Vahid A; Dhara A; Babu AT; Vijayan V J Phys Chem B; 2024 May; 128(18):4325-4335. PubMed ID: 38676652 [TBL] [Abstract][Full Text] [Related]
15. Zn Li X; Du X; Ni J Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678122 [TBL] [Abstract][Full Text] [Related]
16. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain. Jiang LF; Yao TM; Zhu ZL; Wang C; Ji LN Biochim Biophys Acta; 2007 Nov; 1774(11):1414-21. PubMed ID: 17920001 [TBL] [Abstract][Full Text] [Related]
17. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411 [TBL] [Abstract][Full Text] [Related]
18. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Dregni AJ; Duan P; Hong M Biochemistry; 2020 Jun; 59(24):2237-2248. PubMed ID: 32453948 [TBL] [Abstract][Full Text] [Related]
19. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
20. Ser Sandhu P; Naeem MM; Lu C; Kumarathasan P; Gomes J; Basak A Bioorg Med Chem Lett; 2017 Feb; 27(3):642-652. PubMed ID: 27989667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]