BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27513615)

  • 1. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.
    Jiji AC; Shine A; Vijayan V
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11562-6. PubMed ID: 27513615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of the Self-Aggregation of R3R4 Bi-repeat of Tau Protein.
    Jayan P; Vahid AA; Kizhakkeduth ST; Muhammed SOH; Shibina AB; Vijayan V
    Chembiochem; 2021 Jun; 22(12):2093-2097. PubMed ID: 33826208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific amino acid D-isomerization of Tau R2 and R3 peptides changes the fibril morphology, resulting in attenuation of Tau aggregation inhibitor potency.
    Murata T; Ito G; Utsunomiya-Tate N
    Biochem Biophys Res Commun; 2023 Apr; 654():18-25. PubMed ID: 36878036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn
    Jiji AC; Arshad A; Dhanya SR; Shabana PS; Mehjubin CK; Vijayan V
    Chemistry; 2017 Dec; 23(67):16976-16979. PubMed ID: 29044752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Prion-Like Cross-Talk between a Key Alzheimer's Disease Tau-Fragment R3 and the Type 2 Diabetes Peptide IAPP.
    Arya S; Claud SL; Cantrell KL; Bowers MT
    ACS Chem Neurosci; 2019 Nov; 10(11):4757-4765. PubMed ID: 31642657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR.
    Ma QF; Li YM; Du JT; Kanazawa K; Nemoto T; Nakanishi H; Zhao YF
    Biopolymers; 2005 Oct; 79(2):74-85. PubMed ID: 15986501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease.
    Dammers C; Yolcu D; Kukuk L; Willbold D; Pickhardt M; Mandelkow E; Horn AH; Sticht H; Malhis MN; Will N; Schuster J; Funke SA
    PLoS One; 2016; 11(12):e0167432. PubMed ID: 28006031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn
    Li X; Du X; Ni J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS.
    Ma Q; Li Y; Du J; Liu H; Kanazawa K; Nemoto T; Nakanishi H; Zhao Y
    Peptides; 2006 Apr; 27(4):841-9. PubMed ID: 16225961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association of cis-tau peptide.
    Barman A; Hamelberg D
    Proteins; 2015 Mar; 83(3):436-44. PubMed ID: 25524218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's disease.
    Daly NL; Hoffmann R; Otvos L; Craik DJ
    Biochemistry; 2000 Aug; 39(30):9039-46. PubMed ID: 10913317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation.
    Annadurai N; Malina L; Malohlava J; Hajdúch M; Das V
    Biochimie; 2022 Sep; 200():79-86. PubMed ID: 35623497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of G326 in Determining the Aggregation Propensity of R3 Tau Repeat: Insights from Studies on R1R3 Tau Construct.
    Sahayaraj AE; Abdul Vahid A; Dhara A; Babu AT; Vijayan V
    J Phys Chem B; 2024 May; 128(18):4325-4335. PubMed ID: 38676652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain.
    Jiang LF; Yao TM; Zhu ZL; Wang C; Ji LN
    Biochim Biophys Acta; 2007 Nov; 1774(11):1414-21. PubMed ID: 17920001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy.
    Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G
    Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance.
    Dregni AJ; Duan P; Hong M
    Biochemistry; 2020 Jun; 59(24):2237-2248. PubMed ID: 32453948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ser
    Sandhu P; Naeem MM; Lu C; Kumarathasan P; Gomes J; Basak A
    Bioorg Med Chem Lett; 2017 Feb; 27(3):642-652. PubMed ID: 27989667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.