These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27513660)

  • 1. Wildfire Suppression Costs for Canada under a Changing Climate.
    Hope ES; McKenney DW; Pedlar JH; Stocks BJ; Gauthier S
    PLoS One; 2016; 11(8):e0157425. PubMed ID: 27513660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire regime zonation under current and future climate over eastern Canada.
    Boulanger Y; Gauthier S; Gray DR; Le Goff H; Lefort P; Morissette J
    Ecol Appl; 2013 Jun; 23(4):904-23. PubMed ID: 23865239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003.
    Littell JS; McKenzie D; Peterson DL; Westerling AL
    Ecol Appl; 2009 Jun; 19(4):1003-21. PubMed ID: 19544740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Past and future changes in Canadian boreal wildfire activity.
    Girardin MP; Mudelsee M
    Ecol Appl; 2008 Mar; 18(2):391-406. PubMed ID: 18488604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating future burned areas under changing climate in the EU-Mediterranean countries.
    Amatulli G; Camia A; San-Miguel-Ayanz J
    Sci Total Environ; 2013 Apr; 450-451():209-22. PubMed ID: 23500819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying wildfire models from ecology and statistical physics.
    Zinck RD; Grimm V
    Am Nat; 2009 Nov; 174(5):E170-85. PubMed ID: 19799499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005.
    Parisien MA; Parks SA; Krawchuk MA; Flannigan MD; Bowman LM; Moritz MA
    Ecol Appl; 2011 Apr; 21(3):789-805. PubMed ID: 21639045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century.
    Westerling AL; Turner MG; Smithwick EA; Romme WH; Ryan MG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13165-70. PubMed ID: 21788495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.
    Krawchuk MA; Cumming SG
    Ecol Appl; 2011 Jan; 21(1):122-36. PubMed ID: 21516892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting fire responses to climate and management: insights from two Australian ecosystems.
    King KJ; Cary GJ; Bradstock RA; Marsden-Smedley JB
    Glob Chang Biol; 2013 Apr; 19(4):1223-35. PubMed ID: 23504898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA.
    Cansler CA; McKenzie D
    Ecol Appl; 2014 Jul; 24(5):1037-56. PubMed ID: 25154095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions.
    Loudermilk EL; Scheller RM; Weisberg PJ; Yang J; Dilts TE; Karam SL; Skinner C
    Glob Chang Biol; 2013 Nov; 19(11):3502-15. PubMed ID: 23821586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.
    Brotons L; Aquilué N; de Cáceres M; Fortin MJ; Fall A
    PLoS One; 2013; 8(5):e62392. PubMed ID: 23658726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.
    Mann ML; Batllori E; Moritz MA; Waller EK; Berck P; Flint AL; Flint LE; Dolfi E
    PLoS One; 2016; 11(4):e0153589. PubMed ID: 27124597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fire as the dominant driver of central Canadian boreal forest carbon balance.
    Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST
    Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global increase in wildfire risk due to climate-driven declines in fuel moisture.
    Ellis TM; Bowman DMJS; Jain P; Flannigan MD; Williamson GJ
    Glob Chang Biol; 2022 Feb; 28(4):1544-1559. PubMed ID: 34800319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia.
    Burrell AL; Sun Q; Baxter R; Kukavskaya EA; Zhila S; Shestakova T; Rogers BM; Kaduk J; Barrett K
    Sci Total Environ; 2022 Jul; 831():154885. PubMed ID: 35358519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projected effects of climate and development on California wildfire emissions through 2100.
    Hurteau MD; Westerling AL; Wiedinmyer C; Bryant BP
    Environ Sci Technol; 2014 Feb; 48(4):2298-304. PubMed ID: 24443984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains.
    Calder WJ; Parker D; Stopka CJ; Jiménez-Moreno G; Shuman BN
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13261-6. PubMed ID: 26438834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-scale spatial climate variation and drought mediate the likelihood of reburning.
    Parks SA; Parisien MA; Miller C; Holsinger LM; Baggett LS
    Ecol Appl; 2018 Mar; 28(2):573-586. PubMed ID: 29280248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.