These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27513660)

  • 21. Divergent responses of fire to recent warming and drying across south-eastern Australia.
    Bradstock R; Penman T; Boer M; Price O; Clarke H
    Glob Chang Biol; 2014 May; 20(5):1412-28. PubMed ID: 24151212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.
    Kang S; Kimball JS; Running SW
    Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate change and wildland firefighter health and safety.
    Withen P
    New Solut; 2015 Feb; 24(4):577-84. PubMed ID: 25816171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global and regional analysis of climate and human drivers of wildfire.
    Aldersley A; Murray SJ; Cornell SE
    Sci Total Environ; 2011 Aug; 409(18):3472-81. PubMed ID: 21689843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling transient response of forests to climate change.
    Dale VH; Tharp ML; Lannom KO; Hodges DG
    Sci Total Environ; 2010 Mar; 408(8):1888-901. PubMed ID: 20163827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.
    Tautenhahn S; Lichstein JW; Jung M; Kattge J; Bohlman SA; Heilmeier H; Prokushkin A; Kahl A; Wirth C
    Glob Chang Biol; 2016 Jun; 22(6):2178-97. PubMed ID: 26649652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management.
    Curt T; Borgniet L; Bouillon C
    J Environ Manage; 2013 Mar; 117():150-61. PubMed ID: 23369835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Future wildfire extent and frequency determined by the longest fire-conducive weather spell.
    Wang X; Swystun T; Flannigan MD
    Sci Total Environ; 2022 Jul; 830():154752. PubMed ID: 35339558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vegetation-fire feedback reduces projected area burned under climate change.
    Hurteau MD; Liang S; Westerling AL; Wiedinmyer C
    Sci Rep; 2019 Feb; 9(1):2838. PubMed ID: 30808990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial and temporal expansion of global wildland fire activity in response to climate change.
    Senande-Rivera M; Insua-Costa D; Miguez-Macho G
    Nat Commun; 2022 Mar; 13(1):1208. PubMed ID: 35260561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global climate change below 2 °C avoids large end century increases in burned area in Canada.
    Curasi SR; Melton JR; Arora VK; Humphreys ER; Whaley CH
    NPJ Clim Atmos Sci; 2024; 7(1):228. PubMed ID: 39359904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding shifts in wildfire regimes as emergent threshold phenomena.
    Zinck RD; Pascual M; Grimm V
    Am Nat; 2011 Dec; 178(6):E149-61. PubMed ID: 22089877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct and indirect effects of climate change on projected future fire regimes in the western United States.
    Liu Z; Wimberly MC
    Sci Total Environ; 2016 Jan; 542(Pt A):65-75. PubMed ID: 26519568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of boreal forest fire on climate warming.
    Randerson JT; Liu H; Flanner MG; Chambers SD; Jin Y; Hess PG; Pfister G; Mack MC; Treseder KK; Welp LR; Chapin FS; Harden JW; Goulden ML; Lyons E; Neff JC; Schuur EA; Zender CS
    Science; 2006 Nov; 314(5802):1130-2. PubMed ID: 17110574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of antecedent fire area on burned area in southern California coastal ecosystems.
    Price OF; Bradstock RA; Keeley JE; Syphard AD
    J Environ Manage; 2012 Dec; 113():301-7. PubMed ID: 23064248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Projection of wildfire activity in southern California in the mid-21st century.
    Yue X; Mickley LJ; Logan JA
    Clim Dyn; 2014 Oct; 43(7-8):1973-1991. PubMed ID: 25346575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vegetation-Rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii.
    Trauernicht C
    Sci Total Environ; 2019 Feb; 650(Pt 1):459-469. PubMed ID: 30199690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A human-driven decline in global burned area.
    Andela N; Morton DC; Giglio L; Chen Y; van der Werf GR; Kasibhatla PS; DeFries RS; Collatz GJ; Hantson S; Kloster S; Bachelet D; Forrest M; Lasslop G; Li F; Mangeon S; Melton JR; Yue C; Randerson JT
    Science; 2017 Jun; 356(6345):1356-1362. PubMed ID: 28663495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fuzzy logic decision support model for climate-driven biomass loss risk in western Oregon and Washington.
    Sheehan T; Bachelet D
    PLoS One; 2019; 14(10):e0222051. PubMed ID: 31652268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the fire simulation processes of the National Fire Management System's Initial Attack Analysis processor.
    Dimitrakopoulos AP; Omi PN
    Environ Manage; 2003 Jan; 31(1):147-56. PubMed ID: 12447582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.