These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 27513685)

  • 41. Monte Carlo simulation and free energies of mixed oxide nanoparticles.
    Purton JA; Parker SC; Allan NL
    Phys Chem Chem Phys; 2013 May; 15(17):6219-25. PubMed ID: 23515460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complementary control by additives of the kinetics of amorphous CaCO3 mineralization at an organic interface: in-situ synchrotron x-ray observations.
    DiMasi E; Kwak SY; Amos FF; Olszta MJ; Lush D; Gower LB
    Phys Rev Lett; 2006 Jul; 97(4):045503. PubMed ID: 16907589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced dissolution of manganese oxide in ice compared to aqueous phase under illuminated and dark conditions.
    Kim K; Yoon HI; Choi W
    Environ Sci Technol; 2012 Dec; 46(24):13160-6. PubMed ID: 23153016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A critical review of the reactivity of manganese oxides with organic contaminants.
    Remucal CK; Ginder-Vogel M
    Environ Sci Process Impacts; 2014 May; 16(6):1247-66. PubMed ID: 24791271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfidation of ferric (hydr)oxides and its implication on contaminants transformation: a review.
    Zhang S; Peiffer S; Liao X; Yang Z; Ma X; He D
    Sci Total Environ; 2022 Apr; 816():151574. PubMed ID: 34798096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfate-Controlled Heterogeneous CaCO
    Zhu Y; Li Q; Kim D; Min Y; Lee B; Jun YS
    Environ Sci Technol; 2021 Aug; 55(16):11455-11464. PubMed ID: 34314155
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Zhu Y; Wang Y; Gao Z; Gupta P; Singamaneni S; Zuo X; Jun YS
    ACS Nano; 2024 Oct; 18(39):26522-26531. PubMed ID: 39283814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization.
    Quigley D; Rodger PM
    J Chem Phys; 2008 Jun; 128(22):221101. PubMed ID: 18553998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Persulfate activation by subsurface minerals.
    Ahmad M; Teel AL; Watts RJ
    J Contam Hydrol; 2010 Jun; 115(1-4):34-45. PubMed ID: 20439128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.
    Rodriguez-Blanco JD; Shaw S; Benning LG
    Nanoscale; 2011 Jan; 3(1):265-71. PubMed ID: 21069231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Involvement of Bacterial and Fungal Extracellular Products in Transformation of Manganese-Bearing Minerals and Its Environmental Impact.
    Farkas B; Vojtková H; Farkas Z; Pangallo D; Kasak P; Lupini A; Kim H; Urík M; Matúš P
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ analysis of a bimodal size distribution of superparamagnetic nanoparticles.
    Thünemann AF; Rolf S; Knappe P; Weidner S
    Anal Chem; 2009 Jan; 81(1):296-301. PubMed ID: 19117457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanopore facilitated monohydrocalcitic amorphous calcium carbonate precipitation.
    Page K; Stack AG; Chen SA; Wang HW
    Phys Chem Chem Phys; 2022 Aug; 24(30):18340-18346. PubMed ID: 35880670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Confinement-Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media.
    Cotin G; Heinrich B; Perton F; Kiefer C; Francius G; Mertz D; Freis B; Pichon B; Strub JM; Cianférani S; Ortiz Peña N; Ihiawakrim D; Portehault D; Ersen O; Khammari A; Picher M; Banhart F; Sanchez C; Begin-Colin S
    Small; 2022 May; 18(20):e2200414. PubMed ID: 35426247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Precipitation in liposomes as a model for intracellular biomineralization.
    Tester CC; Joester D
    Methods Enzymol; 2013; 532():257-76. PubMed ID: 24188771
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New insight into the stability of CaCO3 surfaces and nanoparticles via molecular simulation.
    Bano AM; Rodger PM; Quigley D
    Langmuir; 2014 Jul; 30(25):7513-21. PubMed ID: 24915605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ probing calcium carbonate formation by combining fast controlled precipitation method and small-angle X-ray scattering.
    Chao Y; Horner O; Vallée P; Meneau F; Alos-Ramos O; Hui F; Turmine M; Perrot H; Lédion J
    Langmuir; 2014 Apr; 30(12):3303-9. PubMed ID: 24568190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation.
    Grigolato F; Colombo C; Ferrari R; Rezabkova L; Arosio P
    ACS Nano; 2017 Nov; 11(11):11358-11367. PubMed ID: 29045787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of calcium carbonates with lead in aqueous solutions.
    Godelitsas A; Astilleros JM; Hallam K; Harissopoulos S; Putnis A
    Environ Sci Technol; 2003 Aug; 37(15):3351-60. PubMed ID: 12966981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
    Wu Y; Li W; Sparks DL
    J Colloid Interface Sci; 2015 Nov; 457():319-28. PubMed ID: 26196715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.