These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27513749)

  • 1. Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems.
    Enki DG; Garthwaite PH; Farrington CP; Noufaily A; Andrews NJ; Charlett A
    PLoS One; 2016; 11(8):e0160759. PubMed ID: 27513749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved algorithm for outbreak detection in multiple surveillance systems.
    Noufaily A; Enki DG; Farrington P; Garthwaite P; Andrews N; Charlett A
    Stat Med; 2013 Mar; 32(7):1206-22. PubMed ID: 22941770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study.
    Bédubourg G; Le Strat Y
    PLoS One; 2017; 12(7):e0181227. PubMed ID: 28715489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of infectious disease outbreaks: hierarchical time series models.
    Heisterkamp SH; Dekkers AL; Heijne JC
    Stat Med; 2006 Dec; 25(24):4179-96. PubMed ID: 16958149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation and comparison of three commonly used statistical models for automatic detection of outbreaks in epidemiological data of communicable diseases.
    Rolfhamre P; Ekdahl K
    Epidemiol Infect; 2006 Aug; 134(4):863-71. PubMed ID: 16371181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic features affecting the performance of outbreak detection algorithms.
    Kuang J; Yang WZ; Zhou DL; Li ZJ; Lan YJ
    BMC Public Health; 2012 Jun; 12():418. PubMed ID: 22682110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of statistical process control methods for regional surgical site infection surveillance: a 10-year multicentre pilot study.
    Baker AW; Haridy S; Salem J; Ilieş I; Ergai AO; Samareh A; Andrianas N; Benneyan JC; Sexton DJ; Anderson DJ
    BMJ Qual Saf; 2018 Aug; 27(8):600-610. PubMed ID: 29175853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simulation-Based Study on the Comparison of Statistical and Time Series Forecasting Methods for Early Detection of Infectious Disease Outbreaks.
    Yang E; Park HW; Choi YH; Kim J; Munkhdalai L; Musa I; Ryu KH
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29751672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mobile App and Dashboard for Early Detection of Infectious Disease Outbreaks: Development Study.
    Ahn E; Liu N; Parekh T; Patel R; Baldacchino T; Mullavey T; Robinson A; Kim J
    JMIR Public Health Surveill; 2021 Mar; 7(3):e14837. PubMed ID: 33687334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of statistical algorithms for daily syndromic surveillance aberration detection.
    Noufaily A; Morbey RA; Colón-González FJ; Elliot AJ; Smith GE; Lake IR; McCarthy N
    Bioinformatics; 2019 Sep; 35(17):3110-3118. PubMed ID: 30689731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of Emergency Medical Text Classifier for syndromic surveillance.
    Travers D; Haas SW; Waller AE; Schwartz TA; Mostafa J; Best NC; Crouch J
    AMIA Annu Symp Proc; 2013; 2013():1365-74. PubMed ID: 24551413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated biosurveillance data from England and Wales, 1991-2011.
    Enki DG; Noufaily A; Garthwaite PH; Andrews NJ; Charlett A; Lane C; Farrington CP
    Emerg Infect Dis; 2013 Jan; 19(1):35-42. PubMed ID: 23260848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCM: a practical tool to implement hospital-based syndromic surveillance.
    Ye C; Li Z; Fu Y; Lan Y; Zhu W; Zhou D; Zhang H; Lai S; Buckeridge DL; Sun Q; Yang W
    BMC Res Notes; 2016 Jun; 9():315. PubMed ID: 27317431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts.
    Hafen RP; Anderson DE; Cleveland WS; Maciejewski R; Ebert DS; Abusalah A; Yakout M; Ouzzani M; Grannis SJ
    BMC Med Inform Decis Mak; 2009 Apr; 9():21. PubMed ID: 19383138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring sick leave data for early detection of influenza outbreaks.
    Duchemin T; Bastard J; Ante-Testard PA; Assab R; Daouda OS; Duval A; Garsi JP; Lounissi R; Nekkab N; Neynaud H; Smith DRM; Dab W; Jean K; Temime L; Hocine MN
    BMC Infect Dis; 2021 Jan; 21(1):52. PubMed ID: 33430793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the determinants of outbreak detection performance through simulation and machine learning.
    Jafarpour N; Izadi M; Precup D; Buckeridge DL
    J Biomed Inform; 2015 Feb; 53():180-7. PubMed ID: 25445482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE.
    Burkom HS; Elbert Y; Feldman A; Lin J
    MMWR Suppl; 2004 Sep; 53():67-73. PubMed ID: 15714632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syndromic Surveillance Revolution? Public Health Benefits of Modernizing the Emergency Care Patient Health Record in England.
    Hughes HE; Hughes TC; Haile A; Smith GE; McCloskey B; Elliot AJ
    Public Health Rep; 2017; 132(1_suppl):12S-15S. PubMed ID: 28692387
    [No Abstract]   [Full Text] [Related]  

  • 19. Building test data from real outbreaks for evaluating detection algorithms.
    Texier G; Jackson ML; Siwe L; Meynard JB; Deparis X; Chaudet H
    PLoS One; 2017; 12(9):e0183992. PubMed ID: 28863159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new statistical early outbreak detection method for biosurveillance and performance comparisons.
    Cengiz Ü; Karahasan M
    Stat Med; 2019 Nov; 38(27):5236-5258. PubMed ID: 31588592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.