These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27513896)

  • 1. Anisotropic thermal motion in transition-metal carbonyls from experiments and ab initio theory.
    Deringer VL; Wang A; George J; Dronskowski R; Englert U
    Dalton Trans; 2016 Sep; 45(35):13680-5. PubMed ID: 27513896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal expansion and anisotropic displacements in 𝜶-sulfur from diffraction experiments and first-principles theory.
    George J; Deringer VL; Wang A; Müller P; Englert U; Dronskowski R
    J Chem Phys; 2016 Dec; 145(23):234512. PubMed ID: 28010090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic displacement parameters for H atoms using an ONIOM approach.
    Whitten AE; Spackman MA
    Acta Crystallogr B; 2006 Oct; 62(Pt 5):875-88. PubMed ID: 16983168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal properties of molecular crystals through dispersion-corrected quasi-harmonic ab initio calculations: the case of urea.
    Erba A; Maul J; Civalleri B
    Chem Commun (Camb); 2016 Jan; 52(9):1820-3. PubMed ID: 26670006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene.
    George J; Wang R; Englert U; Dronskowski R
    J Chem Phys; 2017 Aug; 147(7):074112. PubMed ID: 28830176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal-organic frameworks.
    Samperisi L; Zou X; Huang Z
    IUCrJ; 2022 Jul; 9(Pt 4):480-491. PubMed ID: 35844475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models.
    Eyal E; Chennubhotla C; Yang LW; Bahar I
    Bioinformatics; 2007 Jul; 23(13):i175-84. PubMed ID: 17646294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can we trust the experiment? Anisotropic displacement parameters in 1-(halomethyl)-3-nitrobenzene (halogen = Cl or Br).
    Mroz D; Wang R; Englert U; Dronskowski R
    Acta Crystallogr C Struct Chem; 2020 Jun; 76(Pt 6):591-597. PubMed ID: 32499457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On QM/MM and MO/MO cluster calculations of all-atom anisotropic displacement parameters for molecules in crystal structures.
    Dittrich B; Pfitzenreuter S; Hübschle CB
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):110-6. PubMed ID: 22186287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. I. Theory.
    Hoser AA; Madsen AØ
    Acta Crystallogr A Found Adv; 2016 Mar; 72(Pt 2):206-14. PubMed ID: 26919372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations.
    Baima J; Zelferino A; Olivero P; Erba A; Dovesi R
    Phys Chem Chem Phys; 2016 Jan; 18(3):1961-8. PubMed ID: 26686374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion Monte Carlo simulations on uracil-water using an anisotropic atom-atom potential model.
    van Mourik T; Price SL; Clary DC
    Faraday Discuss; 2001; (118):95-108; discussion 109-19. PubMed ID: 11605284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate dynamical structure factors from ab initio lattice dynamics: the case of crystalline silicon.
    Erba A; Ferrabone M; Orlando R; Dovesi R
    J Comput Chem; 2013 Feb; 34(5):346-54. PubMed ID: 23081746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an accurate and efficient theory of physisorption. I. Development of an augmented density-functional theory model.
    Murdachaew G; de Gironcoli S; Scoles G
    J Phys Chem A; 2008 Oct; 112(40):9993-1005. PubMed ID: 18771248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the nuclear parameters for H atoms in X-ray charge-density studies.
    Madsen AØ; Sørensen HO; Flensburg C; Stewart RF; Larsen S
    Acta Crystallogr A; 2004 Nov; 60(Pt 6):550-61. PubMed ID: 15507737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of diffusion Monte Carlo for the first dissociation energies of transition metal carbonyls.
    Diedrich C; Lüchow A; Grimme S
    J Chem Phys; 2005 Jan; 122(2):021101. PubMed ID: 15638563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.
    Gutmann MJ; Refson K; Zimmermann MV; Swainson IP; Dabkowski A; Dabkowska H
    J Phys Condens Matter; 2013 Aug; 25(31):315402. PubMed ID: 23838291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry.
    Maganas D; Krzystek J; Ferentinos E; Whyte AM; Robertson N; Psycharis V; Terzis A; Neese F; Kyritsis P
    Inorg Chem; 2012 Jul; 51(13):7218-31. PubMed ID: 22697407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data.
    Capelli SC; Albinati A; Mason SA; Willis BT
    J Phys Chem A; 2006 Oct; 110(41):11695-703. PubMed ID: 17034163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.