BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27515041)

  • 1. High Throughput Screening: Developed Techniques for Cellulolytic and Xylanolytic Activities Assay.
    Ayala-Mendivil N; Calixto-Romo ML; Amaya-Delgado L; Casas-Godoy L; Sandoval G
    Comb Chem High Throughput Screen; 2016; 19(8):627-635. PubMed ID: 27515041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications.
    Sohail M; Barzkar N; Michaud P; Tamadoni Jahromi S; Babich O; Sukhikh S; Das R; Nahavandi R
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview on marine cellulolytic enzymes and their potential applications.
    Barzkar N; Sohail M
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6873-6892. PubMed ID: 32556412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulase and xylanase synergism in industrial biotechnology.
    Bajaj P; Mahajan R
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8711-8724. PubMed ID: 31628521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylanases of Bacillus spp. isolated from ruminant dung as potential accessory enzymes for agro-waste saccharification.
    Thite VS; Nerurkar AS
    Lett Appl Microbiol; 2015 May; 60(5):456-66. PubMed ID: 25645626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification.
    Cianchetta S; Galletti S; Burzi PL; Cerato C
    Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and xylanase production by Streptomyces sp. grown on lignocellulosic wastes.
    Brito-Cunha CC; de Campos IT; de Faria FP; Bataus LA
    Appl Biochem Biotechnol; 2013 Jun; 170(3):598-608. PubMed ID: 23564431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral and alkaline cellulases: Production, engineering, and applications.
    Ben Hmad I; Gargouri A
    J Basic Microbiol; 2017 Aug; 57(8):653-658. PubMed ID: 28503798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-Based Cellulase Assay Systems as Alternatives for Synthetic Substrates.
    Hefferon K; Cantero-Tubilla B; Badar U; Wilson DW
    Appl Biochem Biotechnol; 2020 Dec; 192(4):1318-1330. PubMed ID: 32734581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal xylanolytic enzymes: Diversity and applications.
    Li X; Dilokpimol A; Kabel MA; de Vries RP
    Bioresour Technol; 2022 Jan; 344(Pt B):126290. PubMed ID: 34748977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylanolytic Enzymes in Pulp and Paper Industry: New Technologies and Perspectives.
    Gupta GK; Dixit M; Kapoor RK; Shukla P
    Mol Biotechnol; 2022 Feb; 64(2):130-143. PubMed ID: 34580813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges for assessing the performance of biomass degrading biocatalysts.
    Himmel ME; Decker SR; Johnson DK
    Methods Mol Biol; 2012; 908():1-8. PubMed ID: 22843384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.
    Bharadwaj R; Wong A; Knierim B; Singh S; Holmes BM; Auer M; Simmons BA; Adams PD; Singh AK
    Bioresour Technol; 2011 Jan; 102(2):1329-37. PubMed ID: 20884206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulases: Classification, Methods of Determination and Industrial Applications.
    Sharma A; Tewari R; Rana SS; Soni R; Soni SK
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1346-80. PubMed ID: 27068832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.