These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27515177)

  • 21. A new optical coupling control technique and application in SWL.
    Lv JL
    Urolithiasis; 2016 Nov; 44(6):539-544. PubMed ID: 27025864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechanistic analysis of stone fracture in lithotripsy.
    Sapozhnikov OA; Maxwell AD; MacConaghy B; Bailey MR
    J Acoust Soc Am; 2007 Feb; 121(2):1190-202. PubMed ID: 17348540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model.
    Paterson RF; Lifshitz DA; Lingeman JE; Evan AP; Connors BA; Fineberg NS; Williams JC; McAteer JA
    J Urol; 2002 Nov; 168(5):2211-5. PubMed ID: 12394761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Third prize: the impact of fluid environment manipulation on shockwave lithotripsy artificial calculi fragmentation rates.
    Méndez-Probst CE; Fernadez A; Erdeljan P; Vanjecek M; Cadieux PA; Razvi H
    J Endourol; 2011 Mar; 25(3):397-401. PubMed ID: 21401394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial.
    Pace KT; Ghiculete D; Harju M; Honey RJ;
    J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
    Maxwell AD; Wang YN; Kreider W; Cunitz BW; Starr F; Lee D; Nazari Y; Williams JC; Bailey MR; Sorensen MD
    J Endourol; 2019 Oct; 33(10):787-792. PubMed ID: 31016998
    [No Abstract]   [Full Text] [Related]  

  • 31. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.
    Tham LM; Lee HP; Lu C
    J Urol; 2007 Jul; 178(1):314-9. PubMed ID: 17499770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms.
    Wess OJ; Mayer J
    Urolithiasis; 2020 Apr; 48(2):137-149. PubMed ID: 30523389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones.
    Heimbach D; Munver R; Zhong P; Jacobs J; Hesse A; Müller SC; Preminger GM
    J Urol; 2000 Aug; 164(2):537-44. PubMed ID: 10893640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turbulent water coupling in shock wave lithotripsy.
    Lautz J; Sankin G; Zhong P
    Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
    Maxwell AD; Cunitz BW; Kreider W; Sapozhnikov OA; Hsi RS; Harper JD; Bailey MR; Sorensen MD
    J Urol; 2015 Jan; 193(1):338-44. PubMed ID: 25111910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximizing mechanical stress in small urinary stones during burst wave lithotripsy.
    Sapozhnikov OA; Maxwell AD; Bailey MR
    J Acoust Soc Am; 2021 Dec; 150(6):4203. PubMed ID: 34972267
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 40. [Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy].
    Loske AM; Fernández F; Gutiérrez J
    Z Med Phys; 2005; 15(1):53-8. PubMed ID: 15830785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.