These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
649 related articles for article (PubMed ID: 27515308)
1. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Camilleri ET; Gustafson MP; Dudakovic A; Riester SM; Garces CG; Paradise CR; Takai H; Karperien M; Cool S; Sampen HJ; Larson AN; Qu W; Smith J; Dietz AB; van Wijnen AJ Stem Cell Res Ther; 2016 Aug; 7(1):107. PubMed ID: 27515308 [TBL] [Abstract][Full Text] [Related]
2. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells. Kouroupis D; Bowles AC; Greif DN; Leñero C; Best TM; Kaplan LD; Correa D Cytotherapy; 2020 Nov; 22(11):677-689. PubMed ID: 32723596 [TBL] [Abstract][Full Text] [Related]
3. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Kisiel AH; McDuffee LA; Masaoud E; Bailey TR; Esparza Gonzalez BP; Nino-Fong R Am J Vet Res; 2012 Aug; 73(8):1305-17. PubMed ID: 22849692 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Li CY; Wu XY; Tong JB; Yang XX; Zhao JL; Zheng QF; Zhao GB; Ma ZJ Stem Cell Res Ther; 2015 Apr; 6(1):55. PubMed ID: 25884704 [TBL] [Abstract][Full Text] [Related]
5. High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. Dudakovic A; Camilleri E; Riester SM; Lewallen EA; Kvasha S; Chen X; Radel DJ; Anderson JM; Nair AA; Evans JM; Krych AJ; Smith J; Deyle DR; Stein JL; Stein GS; Im HJ; Cool SM; Westendorf JJ; Kakar S; Dietz AB; van Wijnen AJ J Cell Biochem; 2014 Oct; 115(10):1816-28. PubMed ID: 24905804 [TBL] [Abstract][Full Text] [Related]
6. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects "stemness" properties. Bakopoulou A; Apatzidou D; Aggelidou E; Gousopoulou E; Leyhausen G; Volk J; Kritis A; Koidis P; Geurtsen W Stem Cell Res Ther; 2017 Nov; 8(1):247. PubMed ID: 29096714 [TBL] [Abstract][Full Text] [Related]
7. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Screven R; Kenyon E; Myers MJ; Yancy HF; Skasko M; Boxer L; Bigley EC; Borjesson DL; Zhu M Vet Immunol Immunopathol; 2014 Sep; 161(1-2):21-31. PubMed ID: 25026887 [TBL] [Abstract][Full Text] [Related]
8. Isolation and Characterization of Human Mesenchymal Stromal Cell Subpopulations: Comparison of Bone Marrow and Adipose Tissue. Busser H; Najar M; Raicevic G; Pieters K; Velez Pombo R; Philippart P; Meuleman N; Bron D; Lagneaux L Stem Cells Dev; 2015 Sep; 24(18):2142-57. PubMed ID: 26086188 [TBL] [Abstract][Full Text] [Related]
9. Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. Roson-Burgo B; Sanchez-Guijo F; Del Cañizo C; De Las Rivas J BMC Genomics; 2016 Nov; 17(1):944. PubMed ID: 27871224 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Baer PC; Kuçi S; Krause M; Kuçi Z; Zielen S; Geiger H; Bader P; Schubert R Stem Cells Dev; 2013 Jan; 22(2):330-9. PubMed ID: 22920587 [TBL] [Abstract][Full Text] [Related]
11. Xeno-Free Cultivation of Mesenchymal Stem Cells From the Corneal Stroma. Matthyssen S; Ní Dhubhghaill S; Van Gerwen V; Zakaria N Invest Ophthalmol Vis Sci; 2017 May; 58(5):2659-2665. PubMed ID: 28524929 [TBL] [Abstract][Full Text] [Related]
12. Culture and properties of adipose-derived mesenchymal stem cells: characteristics in vitro and immunosuppression in vivo. Cao F; Liu T; Xu Y; Xu D; Feng S Int J Clin Exp Pathol; 2015; 8(7):7694-709. PubMed ID: 26339336 [TBL] [Abstract][Full Text] [Related]
13. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394 [TBL] [Abstract][Full Text] [Related]
14. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Qadan MA; Piuzzi NS; Boehm C; Bova W; Moos M; Midura RJ; Hascall VC; Malcuit C; Muschler GF Cytotherapy; 2018 Mar; 20(3):343-360. PubMed ID: 29396254 [TBL] [Abstract][Full Text] [Related]
15. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Du WJ; Chi Y; Yang ZX; Li ZJ; Cui JJ; Song BQ; Li X; Yang SG; Han ZB; Han ZC Stem Cell Res Ther; 2016 Nov; 7(1):163. PubMed ID: 27832825 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the effects of human adipose and bone marrow mesenchymal stem cells on T lymphocytes. Xishan Z; Baoxin H; Xinna Z; Jun R Cell Biol Int; 2013 Jan; 37(1):11-8. PubMed ID: 23319317 [TBL] [Abstract][Full Text] [Related]
17. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Almalki SG; Agrawal DK Stem Cell Res Ther; 2017 May; 8(1):113. PubMed ID: 28499402 [TBL] [Abstract][Full Text] [Related]
18. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells. Flores-Torales E; Orozco-Barocio A; Gonzalez-Ramella OR; Carrasco-Yalan A; Gazarian K; Cuneo-Pareto S Folia Histochem Cytobiol; 2010 Dec; 48(4):682-6. PubMed ID: 21478116 [TBL] [Abstract][Full Text] [Related]
19. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Amati E; Perbellini O; Rotta G; Bernardi M; Chieregato K; Sella S; Rodeghiero F; Ruggeri M; Astori G Stem Cell Res Ther; 2018 Jan; 9(1):10. PubMed ID: 29338788 [TBL] [Abstract][Full Text] [Related]
20. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells. Topoluk N; Hawkins R; Tokish J; Mercuri J Am J Sports Med; 2017 Sep; 45(11):2637-2646. PubMed ID: 28541092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]