These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 27515428)
1. Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure. Kunimoto R; Vogt M; Bajorath J J Comput Aided Mol Des; 2016 Jul; 30(7):523-31. PubMed ID: 27515428 [TBL] [Abstract][Full Text] [Related]
2. Design of chemical space networks on the basis of Tversky similarity. Wu M; Vogt M; Maggiora GM; Bajorath J J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392 [TBL] [Abstract][Full Text] [Related]
3. A structural hierarchy matching approach for molecular similarity/substructure searching. Ji SS; Dong HJ; Zhou XX; Liu YM; Zhang FX; Wang Q; Huang XA Molecules; 2015 May; 20(5):8791-9. PubMed ID: 25988610 [TBL] [Abstract][Full Text] [Related]
4. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. Zhang B; Vogt M; Maggiora GM; Bajorath J J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860 [TBL] [Abstract][Full Text] [Related]
5. Maximum common substructure-based data fusion in similarity searching. Duesbury E; Holliday J; Willett P J Chem Inf Model; 2015 Feb; 55(2):222-30. PubMed ID: 25602464 [TBL] [Abstract][Full Text] [Related]
6. LSA: a local-weighted structural alignment tool for pharmaceutical virtual screening. Li X; Yan X; Yang Y; Gu Q; Zhou H; Du Y; Lu Y; Liao J; Xu J RSC Adv; 2019 Jan; 9(7):3912-3917. PubMed ID: 35518105 [TBL] [Abstract][Full Text] [Related]
7. The compressed feature matrix--a fast method for feature based substructure search. Abolmaali SF; Wegner JK; Zell A J Mol Model; 2003 Aug; 9(4):235-41. PubMed ID: 12720113 [TBL] [Abstract][Full Text] [Related]
8. Maximum common property: a new approach for molecular similarity. Antelo-Collado A; Carrasco-Velar R; García-Pedrajas N; Cerruela-García G J Cheminform; 2020 Oct; 12(1):61. PubMed ID: 33372638 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity. Zhang B; Vogt M; Maggiora GM; Bajorath J J Comput Aided Mol Des; 2015 Jul; 29(7):595-608. PubMed ID: 26049785 [TBL] [Abstract][Full Text] [Related]
10. MetMaxStruct: A Tversky-Similarity-Based Strategy for Analysing the (Sub)Structural Similarities of Drugs and Endogenous Metabolites. O'Hagan S; Kell DB Front Pharmacol; 2016; 7():266. PubMed ID: 27597830 [TBL] [Abstract][Full Text] [Related]
11. Do not hesitate to use Tversky-and other hints for successful active analogue searches with feature count descriptors. Horvath D; Marcou G; Varnek A J Chem Inf Model; 2013 Jul; 53(7):1543-62. PubMed ID: 23731338 [TBL] [Abstract][Full Text] [Related]
12. Similarity metrics for ligands reflecting the similarity of the target proteins. Schuffenhauer A; Floersheim P; Acklin P; Jacoby E J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501 [TBL] [Abstract][Full Text] [Related]
13. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665 [TBL] [Abstract][Full Text] [Related]
14. 3D flexible alignment using 2D maximum common substructure: dependence of prediction accuracy on target-reference chemical similarity. Kawabata T; Nakamura H J Chem Inf Model; 2014 Jul; 54(7):1850-63. PubMed ID: 24895842 [TBL] [Abstract][Full Text] [Related]
15. VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder. Samanta S; O'Hagan S; Swainston N; Roberts TJ; Kell DB Molecules; 2020 Jul; 25(15):. PubMed ID: 32751155 [TBL] [Abstract][Full Text] [Related]
16. Protein similarity from knot theory: geometric convolution and line weavings. Erdmann MA J Comput Biol; 2005; 12(6):609-37. PubMed ID: 16108707 [TBL] [Abstract][Full Text] [Related]
17. Analysis of drug-endogenous human metabolite similarities in terms of their maximum common substructures. O'Hagan S; Kell DB J Cheminform; 2017; 9():18. PubMed ID: 28316656 [TBL] [Abstract][Full Text] [Related]
19. The optimization of running time for a maximum common substructure-based algorithm and its application in drug design. Chen J; Sheng J; Lv D; Zhong Y; Zhang G; Nan P Comput Biol Chem; 2014 Feb; 48():14-20. PubMed ID: 24291488 [TBL] [Abstract][Full Text] [Related]
20. Mapping algorithms for molecular similarity analysis and ligand-based virtual screening: design of DynaMAD and comparison with MAD and DMC. Eckert H; Vogt I; Bajorath J J Chem Inf Model; 2006; 46(4):1623-34. PubMed ID: 16859294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]