These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27515436)

  • 21. An explorative investigation of functional differences in plantar center of pressure of four foot types using sample entropy method.
    Mei Z; Ivanov K; Zhao G; Li H; Wang L
    Med Biol Eng Comput; 2017 Apr; 55(4):537-548. PubMed ID: 27311606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects.
    Vieira MF; Sacco Ide C; Nora FG; Rosenbaum D; Lobo da Costa PH
    PLoS One; 2015; 10(8):e0135821. PubMed ID: 26270323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait.
    Meurisse GM; Dierick F; Schepens B; Bastien GJ
    Gait Posture; 2016 Jan; 43():245-50. PubMed ID: 26549482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decomposition of superimposed ground reaction forces into left and right force profiles.
    Davis BL; Cavanagh PR
    J Biomech; 1993; 26(4-5):593-7. PubMed ID: 8478360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-shoe plantar pressures and ground reaction forces during overweight adults' overground walking.
    de Castro MP; Abreu SC; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Res Q Exerc Sport; 2014 Jun; 85(2):188-97. PubMed ID: 25098014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reduction in the knee adduction moment with medial thrust gait is associated with a medial shift in center of plantar pressure.
    Ferrigno C; Wimmer MA; Trombley RM; Lundberg HJ; Shakoor N; Thorp LE
    Med Eng Phys; 2016 Jul; 38(7):615-621. PubMed ID: 27158051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy evaluation of a method to partition ground reaction force and center of pressure in cane-assisted gait using an instrumented cane with a triaxial force sensor.
    Kamono A; Kato M; Ogihara N
    Gait Posture; 2018 Feb; 60():141-147. PubMed ID: 29207289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Foot forces induced through Tai Chi push-hand exercises.
    Wong SH; Ji T; Hong Y; Fok SL; Wang L
    J Appl Biomech; 2013 Aug; 29(4):395-404. PubMed ID: 22927546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design.
    Khoury M; Wolf A; Debbi EM; Herman A; Haim A
    Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A foot/ground contact model for biomechanical inverse dynamics analysis.
    Van Hulle R; Schwartz C; Denoël V; Croisier JL; Forthomme B; Brüls O
    J Biomech; 2020 Feb; 100():109412. PubMed ID: 31959391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network.
    Choi A; Jung H; Lee KY; Lee S; Mun JH
    Med Biol Eng Comput; 2019 Dec; 57(12):2693-2703. PubMed ID: 31650342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limb dominance related to the variability and symmetry of the vertical ground reaction force and center of pressure.
    Wang Y; Watanabe K
    J Appl Biomech; 2012 Aug; 28(4):473-8. PubMed ID: 22983942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of gait cadence on the ground reaction forces and plantar pressures during load carriage of young adults.
    Castro MP; Figueiredo MC; Abreu S; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Appl Ergon; 2015 Jul; 49():41-6. PubMed ID: 25766421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On modeling center of foot pressure distortion through a medium.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):345-52. PubMed ID: 15759564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of impeded medial longitudinal arch drop on vertical ground reaction force and center of pressure during static loading.
    Chen SJ; Gielo-Perczak K
    Foot Ankle Int; 2011 Jan; 32(1):77-84. PubMed ID: 21288438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait.
    Muniz AM; Liu H; Lyons KE; Pahwa R; Liu W; Nobre FF; Nadal J
    J Biomech; 2010 Mar; 43(4):720-6. PubMed ID: 19914622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces.
    Kim B; Lim H; Park S
    J Biomech; 2020 Dec; 113():110069. PubMed ID: 33142204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ground contact characteristics of Tai Chi gait.
    Wu G; Hitt J
    Gait Posture; 2005 Aug; 22(1):32-9. PubMed ID: 15996589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.