These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27515741)

  • 1. Multivariate Welch t-test on distances.
    Alekseyenko AV
    Bioinformatics; 2016 Dec; 32(23):3552-3558. PubMed ID: 27515741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. W
    Hamidi B; Wallace K; Vasu C; Alekseyenko AV
    Microbiome; 2019 Apr; 7(1):51. PubMed ID: 30935409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
    Kelly BJ; Gross R; Bittinger K; Sherrill-Mix S; Lewis JD; Collman RG; Bushman FD; Li H
    Bioinformatics; 2015 Aug; 31(15):2461-8. PubMed ID: 25819674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances.
    Tang ZZ; Chen G; Alekseyenko AV
    Bioinformatics; 2016 Sep; 32(17):2618-25. PubMed ID: 27197815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies.
    Chen J; Zhang X
    Bioinformatics; 2021 Dec; 38(1):286-288. PubMed ID: 34255026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiRKAT-S: a community-level test of association between the microbiota and survival times.
    Plantinga A; Zhan X; Zhao N; Chen J; Jenq RR; Wu MC
    Microbiome; 2017 Feb; 5(1):17. PubMed ID: 28179014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rarefaction-without-resampling extension of PERMANOVA for testing presence-absence associations in the microbiome.
    Hu YJ; Satten GA
    Bioinformatics; 2022 Aug; 38(15):3689-3697. PubMed ID: 35723568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small-sample kernel association test for correlated data with application to microbiome association studies.
    Zhan X; Xue L; Zheng H; Plantinga A; Wu MC; Schaid DJ; Zhao N; Chen J
    Genet Epidemiol; 2018 Dec; 42(8):772-782. PubMed ID: 30218543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An omnibus test for differential distribution analysis of microbiome sequencing data.
    Chen J; King E; Deek R; Wei Z; Yu Y; Grill D; Ballman K; Stegle O
    Bioinformatics; 2018 Feb; 34(4):643-651. PubMed ID: 29040451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample size determinations for Welch's test in one-way heteroscedastic ANOVA.
    Jan SL; Shieh G
    Br J Math Stat Psychol; 2014 Feb; 67(1):72-93. PubMed ID: 23316952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A web application for sample size and power calculation in case-control microbiome studies.
    Mattiello F; Verbist B; Faust K; Raes J; Shannon WD; Bijnens L; Thas O
    Bioinformatics; 2016 Jul; 32(13):2038-40. PubMed ID: 27153704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative binomial mixed models for analyzing microbiome count data.
    Zhang X; Mallick H; Tang Z; Zhang L; Cui X; Benson AK; Yi N
    BMC Bioinformatics; 2017 Jan; 18(1):4. PubMed ID: 28049409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small-sample multivariate kernel machine test for microbiome association studies.
    Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J
    Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using standard microbiome reference groups to simplify beta-diversity analyses and facilitate independent validation.
    Maziarz M; Pfeiffer RM; Wan Y; Gail MH
    Bioinformatics; 2018 Oct; 34(19):3249-3257. PubMed ID: 29668831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Hotelling's test for paired compositional data with application to human microbiome studies.
    Zhao N; Zhan X; Guthrie KA; Mitchell CM; Larson J
    Genet Epidemiol; 2018 Jul; 42(5):459-469. PubMed ID: 29737047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power of Microbiome Beta-Diversity Analyses Based on Standard Reference Samples.
    Gail MH; Wan Y; Shi J
    Am J Epidemiol; 2021 Feb; 190(3):439-447. PubMed ID: 32976571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing hypotheses about the microbiome using the linear decomposition model (LDM).
    Hu YJ; Satten GA
    Bioinformatics; 2020 Aug; 36(14):4106-4115. PubMed ID: 32315393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.
    Zhao N; Chen J; Carroll IM; Ringel-Kulka T; Epstein MP; Zhou H; Zhou JJ; Ringel Y; Li H; Wu MC
    Am J Hum Genet; 2015 May; 96(5):797-807. PubMed ID: 25957468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample size calculation through the incorporation of heteroscedasticity and dependence for a penalized t-statistic in microarray experiments.
    Hirakawa A; Hamada C; Yoshimura I
    J Biopharm Stat; 2012; 22(2):260-75. PubMed ID: 22251173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.