These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2751604)

  • 1. Clinical considerations in the use of thermal and epithermal neutron beams for neutron capture therapy.
    Zamenhof RG; Madoc-Jones H; Harling OK; Bernard JA
    Basic Life Sci; 1989; 50():121-34. PubMed ID: 2751604
    [No Abstract]   [Full Text] [Related]  

  • 2. Fractionation considerations for boron neutron capture therapy: the perspective of a clinician.
    Meek AG
    Basic Life Sci; 1989; 50():113-4. PubMed ID: 2751602
    [No Abstract]   [Full Text] [Related]  

  • 3. A prototype epithermal neutron beam for boron neutron capture therapy.
    Noonan DJ; Russell JL; Brugger RM
    Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.
    Harrington BV
    Pigment Cell Res; 1989; 2(4):246-53. PubMed ID: 2798318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-dose evaluation and optimisation of the irradiation facility for boron neutron capture therapy of brain tumours.
    Matsumoto T; Aizawa O
    Phys Med Biol; 1985 Sep; 30(9):897-907. PubMed ID: 4048274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective thermal neutron capture therapy and diagnosis of malignant melanoma: from basic studies to first clinical treatment.
    Mishima Y; Ichihashi M; Hatta S; Honda C; Sasase A; Yamamura K; Kanda K; Kobayashi T; Fukuda H
    Basic Life Sci; 1989; 50():251-60. PubMed ID: 2665729
    [No Abstract]   [Full Text] [Related]  

  • 7. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons.
    Grusell E; Condé H; Larsson B; Rönnqvist T; Sornsuntisook O; Crawford J; Reist H; Dahl B; Sjöstrand NG; Russel G
    Basic Life Sci; 1990; 54():249-58. PubMed ID: 2176455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical considerations for neutron capture therapy of brain tumors.
    Madoc-Jones H; Wazer DE; Zamenhof RG; Harling OK; Bernard JA
    Basic Life Sci; 1990; 54():23-35. PubMed ID: 2268242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractionation in boron neutron capture therapy.
    Durrant KR; Hopewell J
    Basic Life Sci; 1989; 50():53-61. PubMed ID: 2546535
    [No Abstract]   [Full Text] [Related]  

  • 10. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality.
    Barth RF; Soloway AH; Goodman JH; Gahbauer RA; Gupta N; Blue TE; Yang W; Tjarks W
    Neurosurgery; 1999 Mar; 44(3):433-50; discussion 450-1. PubMed ID: 10069580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdosimetry for boron neutron capture therapy.
    Wuu CS; Amols HI; Kliauga P; Reinstein LE; Saraf S
    Radiat Res; 1992 Jun; 130(3):355-9. PubMed ID: 1594762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research.
    Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA
    Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT.
    Verbakel WF; Stecher-Rasmussen F
    Phys Med Biol; 2001 Mar; 46(3):687-701. PubMed ID: 11277217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.
    Musolino SV; McGinley PH; Greenwood RC; Kliauga P; Fairchild RG
    Med Phys; 1991; 18(4):806-16. PubMed ID: 1656179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of neutron capture therapy in the management of uncontrollable localised tumours.
    Allen BJ
    Australas Radiol; 1990 Nov; 34(4):297-305. PubMed ID: 1965483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.