BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27516325)

  • 1. Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers.
    Fragal EH; Cellet TSP; Fragal VH; Companhoni MVP; Ueda-Nakamura T; Muniz EC; Silva R; Rubira AF
    Carbohydr Polym; 2016 Nov; 152():734-746. PubMed ID: 27516325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation.
    Fragal EH; Cellet TSP; Fragal VH; Witt MA; Companhoni MVP; Ueda-Nakamura T; Silva R; Rubira AF
    Int J Biol Macromol; 2019 Mar; 125():133-142. PubMed ID: 30529209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal.
    Catori DM; Fragal EH; Messias I; Garcia FP; Nakamura CV; Rubira AF
    Int J Biol Macromol; 2021 Jan; 167():726-735. PubMed ID: 33285200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and in vitro biocompatibility of biomimetic hydroxyapatite coatings on chemically treated carbon substrates.
    Hoppe A; Will J; Detsch R; Boccaccini AR; Greil P
    J Biomed Mater Res A; 2014 Jan; 102(1):193-203. PubMed ID: 23650242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering.
    Wang X; Yang X; Xiao X; Li X; Chen C; Sun D
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132124. PubMed ID: 38723802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple factor interactions in biomimetic mineralization of electrospun scaffolds.
    Madurantakam PA; Rodriguez IA; Cost CP; Viswanathan R; Simpson DG; Beckman MJ; Moon PC; Bowlin GL
    Biomaterials; 2009 Oct; 30(29):5456-64. PubMed ID: 19595456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).
    Rakngarm Nimkerdphol A; Otsuka Y; Mutoh Y
    J Mech Behav Biomed Mater; 2014 Aug; 36():98-108. PubMed ID: 24821139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of cellulose nanowhiskers sulfate esterification levels.
    Gu J; Catchmark JM; Kaiser EQ; Archibald DD
    Carbohydr Polym; 2013 Feb; 92(2):1809-16. PubMed ID: 23399223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute.
    Bera T; Vivek AN; Saraf SK; Ramachandrarao P
    Biomed Mater; 2008 Jun; 3(2):025001. PubMed ID: 18458374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering.
    Chen X; Meng Y; Wang Y; Du C; Yang C
    J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.
    Ma X; He Z; Han F; Zhong Z; Chen L; Li B
    Colloids Surf B Biointerfaces; 2016 Jul; 143():81-87. PubMed ID: 26998869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Proteins and Peptides to Create Organic-Hydroxyapatite Hybrids.
    Iijima K; Hashizume M
    Protein Pept Lett; 2018; 25(1):25-33. PubMed ID: 29268681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.
    Qin J; Zhong Z; Ma J
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():377-83. PubMed ID: 26952436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.