These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27516540)

  • 61. Doppler ultrasound signals simulation from vessels with various stenosis degrees.
    Fang X; Wang Y; Wang W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e173-7. PubMed ID: 16844156
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Echo-power estimation from log-compressed video data in dynamic contrast-enhanced ultrasound imaging.
    Payen T; Coron A; Lamuraglia M; Le Guillou-Buffello D; Gaud E; Arditi M; Lucidarme O; Bridal SL
    Ultrasound Med Biol; 2013 Oct; 39(10):1826-37. PubMed ID: 23879926
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of vessel curvature on Doppler derived velocity profiles and fluid flow.
    Krams R; Bambi G; Guidi F; Helderman F; van der Steen AF; Tortoli P
    Ultrasound Med Biol; 2005 May; 31(5):663-71. PubMed ID: 15866416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New technology - demonstration of a vector velocity technique.
    Hansen PM; Pedersen MM; Hansen KL; Nielsen MB; Jensen JA
    Ultraschall Med; 2011 Apr; 32(2):213-5. PubMed ID: 21512980
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels.
    Rossow M; Mantulin WW; Gratton E
    J Biomed Opt; 2009; 14(2):024014. PubMed ID: 19405744
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Accuracy of spectral Doppler flow and tissue velocity measurements in ultrasound systems.
    Walker A; Olsson E; Wranne B; Ringqvist I; Ask P
    Ultrasound Med Biol; 2004 Jan; 30(1):127-32. PubMed ID: 14962617
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel planar tracking technology for physiological image analysis.
    Osborne TM; Lakie M
    J Neurosci Methods; 2011 Oct; 202(1):53-9. PubMed ID: 21907238
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels.
    Wallace S; Logallo N; Faiz KW; Lund C; Brucher R; Russell D
    Ultrasound Med Biol; 2014 Apr; 40(4):828-36. PubMed ID: 24462159
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrasound Deep Learning for Wall Segmentation and Near-Wall Blood Flow Measurement.
    Park JH; Lee SJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2022-2032. PubMed ID: 32746163
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transcutaneous detection of relative changes in artery diameter.
    Hoeks AP; Ruissen CJ; Hick P; Reneman RS
    Ultrasound Med Biol; 1985; 11(1):51-9. PubMed ID: 3892817
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Real-time vector velocity assessment through multigate Doppler and plane waves.
    Ricci S; Bassi L; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):314-24. PubMed ID: 24474137
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography.
    Hansen KL; Udesen J; Oddershede N; Henze L; Thomsen C; Jensen JA; Nielsen MB
    Ultrasonics; 2009 Dec; 49(8):659-67. PubMed ID: 19473683
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A simplified approach for real-time detection of arterial wall velocity and distension.
    Tortoli P; Bettarini R; Guidi F; Andreuccetti F; Righi D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):1005-12. PubMed ID: 11477757
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Validation of V-SS-PARSE for single-shot flow measurement.
    Zuo J; Bolding M; Twieg DB
    Magn Reson Imaging; 2007 Apr; 25(3):335-40. PubMed ID: 17371722
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Partial k-space sampling with zero filling used with phase-contrast flow measurements: in vivo and in vitro validation].
    Pertschy S; Meyer GP; Waalkes S; Doeker R; Koshedub R; Noeske R; Galanski M; Lotz J
    Rofo; 2006 Jul; 178(7):713-20. PubMed ID: 16817124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Measurement of arterial blood flow by Doppler ultrasound.
    Hoskins PR
    Clin Phys Physiol Meas; 1990 Feb; 11(1):1-26. PubMed ID: 2182271
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Volumetric blood flow measurement by simultaneous Doppler signal and B-mode image processing: a feasibility study.
    Willink R; Evans DH
    Ultrasound Med Biol; 1995; 21(4):481-92. PubMed ID: 7571141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reliability and accuracy of ultrasound image analyses completed manually
    Wohlgemuth KJ; Blue MNM; Mota JA
    PeerJ; 2022; 10():e13609. PubMed ID: 35729910
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a flexible implantable sensor for postoperative monitoring of blood flow.
    Cannata JM; Chilipka T; Yang HC; Han S; Ham SW; Rowe VL; Weaver FA; Shung KK; Vilkomerson D
    J Ultrasound Med; 2012 Nov; 31(11):1795-802. PubMed ID: 23091251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.