These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2751669)

  • 1. Kinetics of heme binding to semi-alpha-hemoglobin.
    Park RY; McDonald MJ
    Biochem Biophys Res Commun; 1989 Jul; 162(1):522-7. PubMed ID: 2751669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetic mechanism of heme binding to human apohemoglobin.
    Rose MY; Olson JS
    J Biol Chem; 1983 Apr; 258(7):4298-303. PubMed ID: 6833258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme transfer between phospholipid membranes and uptake by apohemoglobin.
    Rose MY; Thompson RA; Light WR; Olson JS
    J Biol Chem; 1985 Jun; 260(11):6632-40. PubMed ID: 3997843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity in the dissociation of nitric oxide from hemoglobin.
    Moore EG; Gibson QH
    J Biol Chem; 1976 May; 251(9):2788-94. PubMed ID: 1262343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the global architecture of hemoglobin A2 by heme binding studies and molecular modeling.
    Vasudevan G; McDonald MJ
    J Protein Chem; 1998 May; 17(4):319-27. PubMed ID: 9619585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel manufacturing method for producing apohemoglobin and its biophysical properties.
    Pires IS; Belcher DA; Hickey R; Miller C; Badu-Tawiah AK; Baek JH; Buehler PW; Palmer AF
    Biotechnol Bioeng; 2020 Jan; 117(1):125-145. PubMed ID: 31612988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Human Apohemoglobin Unfolding.
    Samuel PP; Ou WC; Phillips GN; Olson JS
    Biochemistry; 2017 Mar; 56(10):1444-1459. PubMed ID: 28218841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specialized functional domains in hemoglobin: dimensions in solution of the apohemoglobin dimer labeled with fluorescein iodoacetamide.
    Sassaroli M; Bucci E; Liesegang J; Fronticelli C; Steiner RF
    Biochemistry; 1984 May; 23(11):2487-91. PubMed ID: 6548152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced conformational states in human apohemoglobin on binding of haptoglobin 1--1. Effect of added heme as a probe of frozen structures.
    Waks M; Beychok S
    Biochemistry; 1974 Jan; 13(1):15-22. PubMed ID: 4808699
    [No Abstract]   [Full Text] [Related]  

  • 13. The stability of the heme-globin linkage in some normal, mutant, and chemically modified hemoglobins.
    Benesch RE; Kwong S
    J Biol Chem; 1990 Sep; 265(25):14881-5. PubMed ID: 1697581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation.
    Pires IS; Belcher DA; Palmer AF
    Biochemistry; 2017 Oct; 56(40):5245-5259. PubMed ID: 28846391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized apo-myoglobin, a new stable reagent for measuring rates of heme dissociation from hemoglobin.
    Gattoni M; Boffi A; Chiancone E
    FEBS Lett; 1998 Mar; 424(3):275-8. PubMed ID: 9539166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-dependent spectral changes accompany CN-hemin binding to human apohemoglobin.
    Vasudevan G; McDonald MJ
    J Protein Chem; 2000 Oct; 19(7):583-90. PubMed ID: 11233172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin.
    Briand VA; Thilakarathne V; Kasi RM; Kumar CV
    Talanta; 2012 Sep; 99():113-8. PubMed ID: 22967529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esterification of the propionate groups promotes alpha/beta hemoglobin chain homogeneity of CN-hemin binding.
    Jennings TM; McDonald MJ
    Biochem Biophys Res Commun; 2002 May; 293(5):1354-7. PubMed ID: 12054662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes.
    Dam RJ; Kongslie KF; Griffith OH
    Biophys J; 1974 Dec; 14(12):933-9. PubMed ID: 4429771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensions in solution of pyridoxylated apohemoglobin.
    Kowalczyck J; Bucci E
    Biochemistry; 1983 Sep; 22(20):4805-9. PubMed ID: 6626535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.