These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27516852)

  • 21. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea.
    Koenigstein S; Dahlke FT; Stiasny MH; Storch D; Clemmesen C; Pörtner HO
    Glob Chang Biol; 2018 Jan; 24(1):526-535. PubMed ID: 28755499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lower diversity of recruits in coastal reef assemblages are associated with higher sea temperatures in the tropical South Atlantic.
    Mazzuco ACA; Stelzer PS; Donadia G; Bernardino JV; Joyeux JC; Bernardino AF
    Mar Environ Res; 2019 Jun; 148():87-98. PubMed ID: 31121526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate warming: a loss of variation in populations can accompany reproductive shifts.
    Massot M; Legendre S; Fédérici P; Clobert J
    Ecol Lett; 2017 Sep; 20(9):1140-1147. PubMed ID: 28712117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenological sequences reveal aggregate life history response to climatic warming.
    Post ES; Pedersen C; Wilmers CC; Forchhammer MC
    Ecology; 2008 Feb; 89(2):363-70. PubMed ID: 18409426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.
    McDermott ME; DeGroote LW
    Glob Chang Biol; 2016 Oct; 22(10):3304-19. PubMed ID: 27195453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal differences in climate change explain a lack of multi-decadal shifts in population characteristics of a pond breeding salamander.
    Kirk MA; Galatowitsch ML; Wissinger SA
    PLoS One; 2019; 14(9):e0222097. PubMed ID: 31491025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region.
    Patel SH; Morreale SJ; Saba VS; Panagopoulou A; Margaritoulis D; Spotila JR
    PLoS One; 2016; 11(6):e0157170. PubMed ID: 27332550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term breeding phenology shift in royal penguins.
    Hindell MA; Bradshaw CJ; Brook BW; Fordham DA; Kerry K; Hull C; McMahon CR
    Ecol Evol; 2012 Jul; 2(7):1563-71. PubMed ID: 22957162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relevance of food peak architecture in trophic interactions.
    Vatka E; Orell M; Rytkönen S
    Glob Chang Biol; 2016 Apr; 22(4):1585-94. PubMed ID: 26527602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos taurus) in response to climate change.
    Burthe S; Butler A; Searle KR; Hall SJ; Thackeray SJ; Wanless S
    J Anim Ecol; 2011 Nov; 80(6):1134-44. PubMed ID: 21668894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.
    Benard MF
    Glob Chang Biol; 2015 Mar; 21(3):1058-65. PubMed ID: 25263760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow.
    Zhu J; Zhang Y; Wang W
    Biol Lett; 2016 Jul; 12(7):. PubMed ID: 27405376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.