These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 2751729)
1. Identification and evaluation of O-alkyl substituted hydroxamic acids as potent in vitro inhibitors of the hepatic glycine cleavage system and investigation of their action on in vivo central nervous system glycine concentration. Johnson G; Boxer PA; Drummond JT; Boyd DK; Anderson RJ Arzneimittelforschung; 1989 Apr; 39(4):432-7. PubMed ID: 2751729 [TBL] [Abstract][Full Text] [Related]
2. Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: evidence for an endogenous inhibitor during in vitro assay. Daly EC; Nadi NS; Aprison MH J Neurochem; 1976 Jan; 26(1):179-85. PubMed ID: 176317 [No Abstract] [Full Text] [Related]
3. Effect of lead on glycine cleavage activity in rat liver mitochondria. Suketa Y; Yamanaka N; Yamamoto T J Toxicol Environ Health; 1976 Sep; 2(1):25-9. PubMed ID: 994242 [TBL] [Abstract][Full Text] [Related]
4. Atypical nonketotic hyperglycinemia with a defective glycine transport system in nervous tissue. Mayor F; Martin A; Rodriguez-Pombo P; Garcia MJ; Benavides J; Ugarte M Neurochem Pathol; 1984-1985 Winter; 2(4):233-49. PubMed ID: 6537469 [TBL] [Abstract][Full Text] [Related]
6. Structure-activity relationships of alkyl- and alkoxy-substituted 1,4-dihydroquinoxaline-2,3-diones: potent and systemically active antagonists for the glycine site of the NMDA receptor. Cai SX; Kher SM; Zhou ZL; Ilyin V; Espitia SA; Tran M; Hawkinson JE; Woodward RM; Weber E; Keana JF J Med Chem; 1997 Feb; 40(5):730-8. PubMed ID: 9057859 [TBL] [Abstract][Full Text] [Related]
7. [Substituted hydroxylamine derivatives acting on the central nervous system]. Szilágyi G; Kasztreiner E; Kovács K; Borsy J Acta Pharm Hung; 1975 Mar; 45(2):49-65. PubMed ID: 1130203 [No Abstract] [Full Text] [Related]
8. Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Mortensen PB; Kølvraa S; Christensen E Epilepsia; 1980 Dec; 21(6):563-9. PubMed ID: 6777152 [TBL] [Abstract][Full Text] [Related]
9. Identification of a glycine-like fragment on the strychnine molecule. Aprison MH; Lipkowitz KB; Simon JR J Neurosci Res; 1987; 17(3):209-13. PubMed ID: 3037092 [TBL] [Abstract][Full Text] [Related]
10. Ultracellular functional and pathogenic mechanisms. V. In vivo and in vitro C.N.S. and liver mitochondria following administration of phenothiazines. Roizin L; Wechsler-Berger M; Brock D Trans Am Neurol Assoc; 1964; 89():247-8. PubMed ID: 5828515 [No Abstract] [Full Text] [Related]
11. Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat. Fürst S; Riba P; Friedmann T; Tímar J; Al-Khrasani M; Obara I; Makuch W; Spetea M; Schütz J; Przewlocki R; Przewlocka B; Schmidhammer H J Pharmacol Exp Ther; 2005 Feb; 312(2):609-18. PubMed ID: 15383636 [TBL] [Abstract][Full Text] [Related]
12. Does hepatic ATP depletion impair glycine conjugation in vivo? Gregus Z; Fekete T; Halászi E; Klaassen CD Drug Metab Dispos; 1996 Dec; 24(12):1347-54. PubMed ID: 8971141 [TBL] [Abstract][Full Text] [Related]
13. [Inhibition by dipropyl acetate and its structural analogs of the glycine synthase system in liver and brain mitochondria]. Martín A; Benavides J; Ugarte M Rev Esp Fisiol; 1982; 38 Suppl():59-62. PubMed ID: 6815738 [TBL] [Abstract][Full Text] [Related]
14. [Elements concerning the cellular organization of glycine receptors dependent of chlorine]. Béchade C; Triller A C R Seances Soc Biol Fil; 1993; 187(1):28-36. PubMed ID: 8242420 [TBL] [Abstract][Full Text] [Related]
15. Central synaptic transmitters. Curtis DR Proc Aust Assoc Neurol; 1970; 7():55-9. PubMed ID: 4328430 [No Abstract] [Full Text] [Related]
16. Transport and effects of cationic dyes and tetrazolium salts in the central nervous system. Koenig H Prog Brain Res; 1968; 29():87-123. PubMed ID: 5735125 [No Abstract] [Full Text] [Related]
17. Tetanus toxin effect on the metabolism and release of acetylcholine in rat central nervous system. Górny D; Herbut D; Pielecka Z Acta Physiol Pol; 1986; 37(4-5):183-90. PubMed ID: 3591361 [TBL] [Abstract][Full Text] [Related]
18. Depletion of cerebral D-serine in non-ketotic hyperglycinemia: possible involvement of glycine cleavage system in control of endogenous D-serine. Iwama H; Takahashi K; Kure S; Hayashi F; Narisawa K; Tada K; Mizoguchi M; Takashima S; Tomita U; Nishikawa T Biochem Biophys Res Commun; 1997 Feb; 231(3):793-6. PubMed ID: 9070895 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the pharmacology of hydroxamate- and carboxylate-based matrix metalloproteinase inhibitors (MMPIs) for the treatment of osteoarthritis. Janusz MJ; Hookfin EB; Brown KK; Hsieh LC; Heitmeyer SA; Taiwo YO; Natchus MG; Pikul S; Almstead NG; De B; Peng SX; Baker TR; Patel V Inflamm Res; 2006 Feb; 55(2):60-5. PubMed ID: 16612565 [TBL] [Abstract][Full Text] [Related]
20. Glycine decarboxylation in the central nervous system. Uhr ML J Neurochem; 1973 Apr; 20(4):1005-9. PubMed ID: 4697865 [No Abstract] [Full Text] [Related] [Next] [New Search]