BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27517327)

  • 1. Assessment of occupational exposure in a granite quarry and processing factory.
    Tejado JJ; Guillén J; Baeza A
    J Radiol Prot; 2016 Sep; 36(3):641-652. PubMed ID: 27517327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doses from radon 222 irradiation for workers of the granite mining industry.
    Сrygorieva L; Tomilin Y
    Probl Radiac Med Radiobiol; 2017 Dec; 22():97-107. PubMed ID: 29286499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation dose to workers due to the inhalation of dust during granite fabrication.
    Zwack LM; McCarthy WB; Stewart JH; McCarthy JF; Allen JG
    J Radiol Prot; 2014 Mar; 34(1):51-62. PubMed ID: 24270240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.
    Ademola JA
    Radiat Prot Dosimetry; 2012 Feb; 148(3):297-300. PubMed ID: 21447506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.
    Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B
    Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey.
    Aykamis AS; Turhan S; Aysun Ugur F; Baykan UN; Kiliç AM
    Radiat Prot Dosimetry; 2013 Nov; 157(1):105-11. PubMed ID: 23633647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).
    Tchorz-Trzeciakiewicz DE; Parkitny T
    J Environ Radioact; 2015 Nov; 149():90-8. PubMed ID: 26225833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose assessment to workers in a dicalcium phosphate production plant.
    Mulas D; Garcia-Orellana J; Casacuberta N; Hierro A; Moreno V; Masqué P
    J Environ Radioact; 2016 Dec; 165():182-190. PubMed ID: 27723530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the radioactive contamination due to radon in a granite processing plant and its decontamination by ventilation.
    Dieguez-Elizondo PM; Gil-Lopez T; O'Donohoe PG; Castejon-Navas J; Galvez-Huerta MA
    J Environ Radioact; 2017 Feb; 167():26-35. PubMed ID: 27876160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.
    Fathabadi N; Vasheghani Farahani M; Moradi M; Hadadi B
    Radiat Prot Dosimetry; 2012 Sep; 151(3):600-3. PubMed ID: 22361352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor radon measurements in the granodiorite area of Bergama (Pergamon)-Kozak, Turkey.
    Karadeniz O; Yaprak G; Akal C; Emen I
    Radiat Prot Dosimetry; 2012 Apr; 149(2):147-54. PubMed ID: 21636559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts.
    Sanusi MSM; Ramli AT; Hashim S; Lee MH
    Ecotoxicol Environ Saf; 2021 Jan; 208():111727. PubMed ID: 33396058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan.
    Prasad G; Ishikawa T; Hosoda M; Sahoo SK; Kavasi N; Sorimachi A; Tokonami S; Uchida S
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):130-4. PubMed ID: 22923241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupational doses from radon in Spanish spas.
    Soto J; Gómez J
    Health Phys; 1999 Apr; 76(4):398-401. PubMed ID: 10086601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.
    Sannappa J; Ningappa C
    Radiat Prot Dosimetry; 2014 Mar; 158(4):406-11. PubMed ID: 24106330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica exposure assessment in a mortality study of Vermont granite workers.
    Verma DK; Vacek PM; des Tombe K; Finkelstein M; Branch B; Gibbs GW; Graham WG
    J Occup Environ Hyg; 2011 Feb; 8(2):71-9. PubMed ID: 21229455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of active and passive methods for radon exhalation from a high-exposure building material.
    Abbasi A; Mirekhtiary F
    Radiat Prot Dosimetry; 2013 Dec; 157(4):570-4. PubMed ID: 23798709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating silicosis risk: Assessing dust constitution and influence of water as a primary prevention measure in cutting and polishing of silica agglomerates, granite and marble.
    Martínez-González D; Carballo-Menéndez M; Guzmán-Taveras R; Quero-Martínez A; Fernández-Tena A
    Environ Res; 2024 Jun; 251(Pt 2):118773. PubMed ID: 38522742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon exposure assessment for underground workers: a case of Seoul Subway Police officers in Korea.
    Song MH; Chang BU; Kim Y; Cho KW
    Radiat Prot Dosimetry; 2011 Nov; 147(3):401-5. PubMed ID: 21242168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occupational exposures in two industrial plants devoted to the production of ammonium phosphate fertilisers.
    Bolívar JP; García-Tenorio R; Mosqueda F; Gázquez MJ; López-Coto I; Adame JA; Vaca F
    J Radiol Prot; 2013 Mar; 33(1):199-212. PubMed ID: 23295410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.