These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27517519)
1. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Quan H; Hur YH; Xin C; Kim JM; Choi JI; Kim MY; Bae HB Int Immunopharmacol; 2016 Oct; 39():328-334. PubMed ID: 27517519 [TBL] [Abstract][Full Text] [Related]
2. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase. Quan H; Kim JM; Lee HJ; Lee SH; Choi JI; Bae HB PLoS One; 2015; 10(5):e0127885. PubMed ID: 26020972 [TBL] [Abstract][Full Text] [Related]
3. Effect of sauchinone, a lignan from Saururus chinensis, on bacterial phagocytosis by macrophages. Jeong KM; Choi JI; Lee SH; Lee HJ; Son JK; Seo CS; Song SW; Kwak SH; Bae HB Eur J Pharmacol; 2014 Apr; 728():176-82. PubMed ID: 24486706 [TBL] [Abstract][Full Text] [Related]
4. Stearoyl lysophosphatidylcholine inhibits LPS-induced extracellular release of HMGB1 through the G2A/calcium/CaMKKβ/AMPK pathway. Quan H; Bae HB; Hur YH; Lee KH; Lee CH; Jang EA; Jeong S Eur J Pharmacol; 2019 Jun; 852():125-133. PubMed ID: 30797785 [TBL] [Abstract][Full Text] [Related]
5. Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation. Kim JM; Han HJ; Hur YH; Quan H; Kwak SH; Choi JI; Bae HB Int Immunopharmacol; 2015 Sep; 28(1):540-5. PubMed ID: 26218280 [TBL] [Abstract][Full Text] [Related]
6. Ginsenoside Rg3 promotes Fc gamma receptor-mediated phagocytosis of bacteria by macrophages via an extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent mechanism. Xin C; Kim J; Quan H; Yin M; Jeong S; Choi JI; Jang EA; Lee CH; Kim DH; Bae HB Int Immunopharmacol; 2019 Dec; 77():105945. PubMed ID: 31644962 [TBL] [Abstract][Full Text] [Related]
7. Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. Han JH; Ahn YH; Choi KY; Hong SH J Cell Physiol; 2009 Jan; 218(1):104-12. PubMed ID: 18756496 [TBL] [Abstract][Full Text] [Related]
8. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Kim HJ; Lee HS; Chong YH; Kang JL Toxicology; 2006 Aug; 225(1):36-47. PubMed ID: 16793190 [TBL] [Abstract][Full Text] [Related]
9. Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. Ishii N; Matsumura T; Kinoshita H; Motoshima H; Kojima K; Tsutsumi A; Kawasaki S; Yano M; Senokuchi T; Asano T; Nishikawa T; Araki E J Biol Chem; 2009 Dec; 284(50):34561-9. PubMed ID: 19843515 [TBL] [Abstract][Full Text] [Related]
10. 4-Hydroxynonenal enhances CD36 expression on murine macrophages via p38 MAPK-mediated activation of 5-lipoxygenase. Yun MR; Im DS; Lee SJ; Park HM; Bae SS; Lee WS; Kim CD Free Radic Biol Med; 2009 Mar; 46(5):692-8. PubMed ID: 19135147 [TBL] [Abstract][Full Text] [Related]
11. 13-Methylberberine reduces HMGB1 release in LPS-activated RAW264.7 cells and increases the survival of septic mice through AMPK/P38 MAPK activation. Chang KC; Ko YS; Kim HJ; Nam DY; Lee DU Int Immunopharmacol; 2016 Nov; 40():269-276. PubMed ID: 27632705 [TBL] [Abstract][Full Text] [Related]
12. Activation of p38 MAPKalpha by extracellular pressure mediates the stimulation of macrophage phagocytosis by pressure. Shiratsuchi H; Basson MD Am J Physiol Cell Physiol; 2005 May; 288(5):C1083-93. PubMed ID: 15625302 [TBL] [Abstract][Full Text] [Related]
13. Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Zhang H; Chen GG; Zhang Z; Chun S; Leung BC; Lai PB Apoptosis; 2012 Apr; 17(4):325-34. PubMed ID: 22170404 [TBL] [Abstract][Full Text] [Related]
14. Prunus yedoensis Matsum. stimulates glucose uptake in L6 rat skeletal muscle cells by activating AMP-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways. Jo K; Lee SE; Lee SW; Hwang JK Nat Prod Res; 2012; 26(17):1610-5. PubMed ID: 21809954 [TBL] [Abstract][Full Text] [Related]
15. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Ho RC; Fujii N; Witters LA; Hirshman MF; Goodyear LJ Biochem Biophys Res Commun; 2007 Oct; 362(2):354-9. PubMed ID: 17709097 [TBL] [Abstract][Full Text] [Related]
16. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Li G; Barrett EJ; Barrett MO; Cao W; Liu Z Endocrinology; 2007 Jul; 148(7):3356-63. PubMed ID: 17446186 [TBL] [Abstract][Full Text] [Related]
17. p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase. Jaswal JS; Gandhi M; Finegan BA; Dyck JR; Clanachan AS Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1978-85. PubMed ID: 17172269 [TBL] [Abstract][Full Text] [Related]
18. Macrophage TNF secretion in endotoxin tolerance: role of SAPK, p38, and MAPK. Kraatz J; Clair L; Rodriguez JL; West MA J Surg Res; 1999 May; 83(2):158-64. PubMed ID: 10329111 [TBL] [Abstract][Full Text] [Related]
19. Low intensity pulsed ultrasound accelerates macrophage phagocytosis by a pathway that requires actin polymerization, Rho, and Src/MAPKs activity. Zhou S; Bachem MG; Seufferlein T; Li Y; Gross HJ; Schmelz A Cell Signal; 2008 Apr; 20(4):695-704. PubMed ID: 18207700 [TBL] [Abstract][Full Text] [Related]
20. AMP-activated protein kinase inhibitor decreases prostaglandin F2α-stimulated interleukin-6 synthesis through p38 MAP kinase in osteoblasts. Kondo A; Otsuka T; Kato K; Natsume H; Kuroyanagi G; Mizutani J; Ito Y; Matsushima-Nishiwaki R; Kozawa O; Tokuda H Int J Mol Med; 2012 Dec; 30(6):1487-92. PubMed ID: 23064268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]