These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 27517606)
1. Two Principles of Reticular Chemistry Uncovered in a Metal-Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units. Catarineu NR; Schoedel A; Urban P; Morla MB; Trickett CA; Yaghi OM J Am Chem Soc; 2016 Aug; 138(34):10826-9. PubMed ID: 27517606 [TBL] [Abstract][Full Text] [Related]
2. Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal-Organic Frameworks. Schoedel A; Rajeh S Top Curr Chem (Cham); 2020 Feb; 378(1):19. PubMed ID: 32009212 [TBL] [Abstract][Full Text] [Related]
3. New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal-Organic Frameworks. Zhang YF; Zhang ZH; Ritter L; Fang H; Wang Q; Space B; Zhang YB; Xue DX; Bai J J Am Chem Soc; 2021 Aug; 143(31):12202-12211. PubMed ID: 34328001 [TBL] [Abstract][Full Text] [Related]
4. New Metal-Organic Frameworks for Chemical Fixation of CO Nguyen PTK; Nguyen HTD; Nguyen HN; Trickett CA; Ton QT; Gutiérrez-Puebla E; Monge MA; Cordova KE; Gándara F ACS Appl Mater Interfaces; 2018 Jan; 10(1):733-744. PubMed ID: 29251904 [TBL] [Abstract][Full Text] [Related]
5. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Kalmutzki MJ; Hanikel N; Yaghi OM Sci Adv; 2018 Oct; 4(10):eaat9180. PubMed ID: 30310868 [TBL] [Abstract][Full Text] [Related]
6. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO Zhang JW; Hu MC; Li SN; Jiang YC; Zhai QG Dalton Trans; 2017 Jan; 46(3):836-844. PubMed ID: 28001155 [TBL] [Abstract][Full Text] [Related]
7. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. Furukawa H; Kim J; Ockwig NW; O'Keeffe M; Yaghi OM J Am Chem Soc; 2008 Sep; 130(35):11650-61. PubMed ID: 18693690 [TBL] [Abstract][Full Text] [Related]
8. A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection. Carboni M; Lin Z; Abney CW; Zhang T; Lin W Chemistry; 2014 Nov; 20(46):14965-70. PubMed ID: 25294005 [TBL] [Abstract][Full Text] [Related]
9. Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks. Muldoon PF; Liu C; Miller CC; Koby SB; Gamble Jarvi A; Luo TY; Saxena S; O'Keeffe M; Rosi NL J Am Chem Soc; 2018 May; 140(20):6194-6198. PubMed ID: 29719954 [TBL] [Abstract][Full Text] [Related]
10. Rational Design and Reticulation of Infinite qbe Rod Secondary Building Units into Metal-Organic Frameworks through a Global Desymmetrization Approach for Inverse C Gong W; Xie Y; Yamano A; Ito S; Reinheimer EW; Dong J; Malliakas CD; Proserpio DM; Cui Y; Farha OK Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202318475. PubMed ID: 38078602 [TBL] [Abstract][Full Text] [Related]
11. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. Guillerm V; Eddaoudi M Acc Chem Res; 2021 Sep; 54(17):3298-3312. PubMed ID: 34227389 [TBL] [Abstract][Full Text] [Related]
12. Optimization-Based Design of Metal-Organic Framework Materials. Martin RL; Haranczyk M J Chem Theory Comput; 2013 Jun; 9(6):2816-25. PubMed ID: 26583871 [TBL] [Abstract][Full Text] [Related]
13. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Wang Z; Tanabe KK; Cohen SM Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339 [TBL] [Abstract][Full Text] [Related]
14. "Heterogeneity within order" in metal-organic frameworks. Furukawa H; Müller U; Yaghi OM Angew Chem Int Ed Engl; 2015 Mar; 54(11):3417-30. PubMed ID: 25586609 [TBL] [Abstract][Full Text] [Related]
16. Expanded organic building units for the construction of highly porous metal-organic frameworks. Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143 [TBL] [Abstract][Full Text] [Related]
17. Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal-Organic Framework Platforms. Jiang H; Jia J; Shkurenko A; Chen Z; Adil K; Belmabkhout Y; Weselinski LJ; Assen AH; Xue DX; O'Keeffe M; Eddaoudi M J Am Chem Soc; 2018 Jul; 140(28):8858-8867. PubMed ID: 29923711 [TBL] [Abstract][Full Text] [Related]
18. Rational Synthesis of Chiral Metal-Organic Frameworks from Preformed Rodlike Secondary Building Units. Grancha T; Qu X; Julve M; Ferrando-Soria J; Armentano D; Pardo E Inorg Chem; 2017 Jun; 56(11):6551-6557. PubMed ID: 28475317 [TBL] [Abstract][Full Text] [Related]
19. Unlocking New Topologies in Zr-Based Metal-Organic Frameworks by Combining Linker Flexibility and Building Block Disorder. Koschnick C; Terban MW; Frison R; Etter M; Böhm FA; Proserpio DM; Krause S; Dinnebier RE; Canossa S; Lotsch BV J Am Chem Soc; 2023 May; 145(18):10051-10060. PubMed ID: 37125876 [TBL] [Abstract][Full Text] [Related]
20. Postsynthetic Modification: An Enabling Technology for the Advancement of Metal-Organic Frameworks. Kalaj M; Cohen SM ACS Cent Sci; 2020 Jul; 6(7):1046-1057. PubMed ID: 32724840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]